[1] National Science and Technology Council. Materials genome initiative strategic plan[R]. USA, 2014.
[2] RACCUGLIA P, ELBERT K C, ADLER P D F, et al. Machine-learning-assisted materials discovery using failed experiments[J]. Nature, 2016, 533 (7601): 73-76.
[3] 汪洪, 向勇, 项晓东, 等. 材料基因组——材料研发新模式[J]. 科技导报, 2015, 33(10): 13-19.
[4] DREYSSE H, CEDER G, FONTAINE D D, et al. Determination of effective pair interactions and segregation behavior at alloy surfaces[J]. Vacuum,1990, 41(1): 446-448.
[5] CEDER G, HUANG P, MENON S, et al. Ab initio calculation of the Cu-Pd one-dimensional long period superstructure phase diagram[J]. Acta Metallurgica Et Materialia,1990, 38(11): 2299-2308.
[6] FONTAINE D D, CEDER G, ASTA M. Thermodynamics of oxygen ordering in YBa2Cu3Oz[J]. Journal of the Less-Common Metals, 1990, 164(11): 108-123.
[7] CEDER G, ASTA M, CARTER W C, et al. Phase diagram and low-temperature behavior of oxygen ordering in YBa2Cu3Oz using ab initio interactions[J]. Physical Review B Condensed Matter, 1990, 41(13): doi: https: //doi.org/10.1103/PhysRevB.41.8698.
[8] CEDER G. A computational study of oxygen ordering in YBa2Cu3Oz and its relation to superconductivity[J]. Molecular Simulation, 1994, 12(2): 141-153.
[9] FONTAINE D D, CEDER G, ASTA M. Low-temperature long-range oxygen order in YBa2Cu3Oz[J]. Nature, 1990, 343(6258): 544-546.
[10] VEN A V D, MARIANETTI C, MORGAN D, et al. Phase transformations and volume changes in spinel LixMn2O4[J]. Solid State Ionics, 2000, 135(1): 21-32.
[11] VEN A V D, CEDER G. Lithium diffusion mechanisms in layered intercalation compounds[J]. Journal of Power Sources, 2001(97/98): 529-531.
[12] DOMPABLO M E, MARIANETTI C, VEN A V D, et al. Jahn-Teller mediated ordering in layered LixMO2 compounds[J]. Physical Review B Condensed Matter, 2001, 63(63): doi: https://doi.org/10.1103/ PhysRevB.63.144107.
[13] VAN D V A, CEDER G, ASTA M, et al. First-principles theory of ionic diffusion with nondilute carriers[J]. Physical Review B, 2001, 64(18): 607-611.
[14] DOMPABLO M E, VEN A V D, CEDER G. First-principles calculations of lithium ordering and phase stability on LixNiO2[J]. Physical Review B, 2002, 66(6): 340-351.
[15] CURTAROLO S, MORGAN D, PERSSON K, et al. Predicting crystal structures with data mining of quantum calculations[J]. Physical Review Letters, 2003, 91(13): doi: 10.1103/PhysRevLett.91.135503.
[16] MORGAN D. Data mining approach to ab-initio prediction of crystal structure[J]. MRS Proceedings, 2003, 804: 1-6.
[17] MORGAN D, CEDER G, CURTAROLO S. High-throughput and data mining with ab initio methods[J]. Measurement Science & Technology, 2004, 16(16): 296-301.
[18] WU Y, LAZIC P, HAUTIER G, et al. First principles high throughput screening of oxynitrides for water-splitting photocatalysts[J]. Energy & Environmental Science, 2012, 6(1): 157-168.
[19] MUELLER T, HAUTIER G, JAIN A, et al. Evaluation of tavorite-structured cathode materials for lithium-ion batteries using high-throughput computing[J]. Chemistry of Materials, 2011, 23(17): 3854-3862.
[20] CEDER G, MORGAN D, FISCHER C, et al. Data-mining-driven quantum mechanics for the prediction of structure[J]. MRS Bulletin, 2006, 31(12): 981-985.
[21] JAIN A, HAUTIER G, MOORE C J, et al. A high-throughput infrastructure for density functional theory calculations[J]. Computational Materials Science, 2011, 50(8): 2295-2310.
[22] HAUTIER G, JAIN A, ONG S P, et al. Phosphates as lithium-ion battery cathodes: An evaluation based on high-throughput ab initio calculations[J]. Chemistry of Materials, 2011, 23(15): 3495-3508.
[23] HAUTIER G, FISCHER C C, JAIN A, et al. Finding nature's missing ternary oxide compounds using machine learning and density functional theory[J]. Chemistry of Materials, 2010, 22(12): 3762-3767.
[24] HAUTIER G, FISCHER C, EHRLACHER V, et al. Data mined ionic substitutions for the discovery of new compounds[J]. Inorganic Chemistry, 2011, 50(2): doi: 10.1021/ic102031h.
[25] YANG L, CEDER G. Data-mined similarity function between material compositions[J]. Physical Review B, 2013, 88(22): 330-339.
[26] MEREDIG B, WOLVERTON C. Dissolving the periodic table in cubic zirconia: Data mining to discover chemical trends[J]. Chemistry of Materials, 2014, 26(6): 1985-1991.
[27] MEREDIG B, AGRAWAL A, KIRKLIN S, et al. Combinatorial screening for new materials in unconstrained composition space with machine learning[J]. Physical Review B, 2014, 89(9): 82-84.
[28] 林海, 林原, 潘锋. “基于材料基因组的全固态锂离子电池研究”获国家立项[J]. 储能科学与技术, 2016, 5(6): 922-925.
[29] WANG X, XIAO R, LI H, et al. Oxysulfide LiAlSO: A lithium superionic conductor from first principles[J]. Physical Review Letters, 2017, 118(19): doi: https://doi.org/10.1103/PhysRevLett.118.195901.
[30] XIANG X, WANG H, XIANG Y, et al. Applications of combinatorial material chip technology in research and development of new materials[J]. Science & Technology Review, 2015, 33(10): 64-78.
[31] WANG Y, LU J, ZHU L, et al. Crystal structure prediction via particle swarm optimization[J]. Physics, 2010, 82(9): 7174-7182.
[32] WANG Y, LU J, ZHU L, et al. CALYPSO: A method for crystal structure prediction[J]. Computer Physics Communications, 2012, 183(10): 2063-2070.
[33] HINUMA Y, PIZZI G, KUMAGAI Y, et al. Band structure diagram paths based on crystallography[J]. Computational Materials Science, 2017, 128: 140-184.
[34] SHI Y, WANG Y, WONG J I, et al. Self-assembly of hierarchical MoSx/CNT nanocomposites (2<x<3): Towards high performance anode materials for lithium ion batteries[J]. Scientific Reports, 2013, 3: doi: 10.1038/srep02169.
[35] HUANG X, ZENG Z, BAO S, et al. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets[J]. Nature Communications, 2013, 4: 1444-1452.
[36] FAN S, LIM L Y, TAY Y Y, et al. Rapid fabrication of a novel Sn-Ge alloy: Structure-property relationship and its enhanced lithium storage properties[J]. Journal of Materials Chemistry A, 2013, 1(46): 14577-14585.
[37] YAN W, CHEN Y, YANG Y, et al. Development of high performance catalysts for CO oxidation using data-based modeling[J]. Catalysis Today, 2011, 174 (1): 127-134.
[38] ZENG Y, BAI K. High-throughput prediction of activation energy for impurity diffusion in fcc metals of Group I and VIII[J]. Journal of Alloys and Compounds, 2015, 624 : 201-209.
[39] INAGAKI T, ISHIDA T. Computational design of non-natural sugar alcohols to increase thermal storage density: Beyond existing organic phase change materials[J]. Journal of the American Chemical Society, 2016, 138(36): 11810-11819.
[40] AYKOL M, KIM S, HEGDE V I, et al. High-throughput computational design of cathode coatings for Li-ion batteries[J]. Nature Communications, 2016, 7: 13779-13790.
[41] WEININGER D SMILES. A chemical language and information system. 1. Introduction to methodology and encoding rules[J]. Journal of Chemical Information & Computer Sciences, 1988, 28 (1): 31-36.
[42] SCHUTT K T, GLAWE H, BROCKHERDE F, et al. How to represent crystal structures for machine learning: towards fast prediction of electronic properties[J]. Physical Review B, 2013, 89(20): 163-168.
[43] FABER F, LINDMAA A, VON LILIENFELD O A, et al. Crystal structure representations for machine learning models of formation energies[J]. International Journal of Quantum Chemistry, 2015, 115(16): 1094-1101.
[44] CEDER G. Opportunities and challenges for first-principles materials design and applications to Li battery materials[J]. MRS Bulletin, 2010, 35(9): 693-701.
[45] CASTELLI I E, OLSEN T, DATTA S, et al. Computational screening of perovskite metal oxides for optimal solar light capture[J]. Energy & Environmental Science, 2012, 5(2): 5814-5819.
[46] MADSEN G K H. Automated search for new thermoelectric materials: The case of LiZnSb[J]. Journal of the American Chemical Society, 2006, 128(37): 12140-12146.
[47] SERRA J M, BAUMES L A, MOLINER M, et al. Zeolite synthesis modelling with support vector machines: A combinatorial approach[J]. Combinatorial Chemistry & High Throughput Screening, 2007, 10(1): 13-24.
[48] HASSAN A M, ALRASHDAN A, HAYAJNEH M T, et al. Prediction of density, porosity and hardness in aluminum-copper-based composite materials using artificial neural network[J]. Journal of Materials Processing Technology, 2009, 209(2): 894-899.
[49] AKBARPOUR H, MOHAJERI M, MORADI M. Investigation on the synthesis conditions at the interpore distance of nanoporous anodic aluminum oxide: A comparison of experimental study, artificial neural network, and multiple linear regression[J]. Computational Materials Science, 2013, 79: 75-81.
[50] CHO K H, NO K T, SCHERAGA H A. A polarizable force field for water using an artificial neural network[J]. Journal of Molecular Structure, 2002, 641(1): 77-91.
[51] CHEN Z, JIANG X, LI J, et al. PDECO: Parallel differential evolution for clusters optimization[J]. Journal of Computational Chemistry, 2013, 34(12): 1046-1059.
[52] WU S Q, JI M, WANG C Z, et al. An adaptive genetic algorithm for crystal structure prediction[J]. Journal of Physics Condensed Matter An Institute of Physics Journal, 2014, 26(3): doi: 10.1088/0953- 8984/26/3/035402.
[53] WEI Y, ZHENG J, CUI S, et al. Kinetics tuning of Li-ion diffusion in layered Li(NixMnyCoz)O2[J]. Journal of the American Chemical Society, 2015, 137(26): 8364-8367.
[54] ZHENG J, LIU T, HU Z, et al. Tuning of thermal stability in layered Li(NixMnyCoz)O2[J]. Journal of the American Chemical Society, 2016, 138(40): 13326.
[55] LIANG J, LIN Q, LI H, et al. Rectification and tunneling effects enabled by Al2O3 atomic layer deposited on back contact of CdTe solar cells[J]. Applied Physics Letters, 2015, 107(1): 699-7539.
[56] LIN Q, SU Y, ZHANG M J, et al. A novel p-type and metallic dual-functional Cu-Al2O3 ultra-thin layer as the back electrode enabling high performance of thin film solar cells[J]. Chemical Communications, 2016, 52(71): 10708-10711.
[57] ZHANG M J, LIN Q, YANG X, et al. Novel p-type conductive semiconductor nanocrystalline film as the back electrode for high-performance thin film solar cells[J]. Nano Letters, 2016, 16(2): 1218-1223.
[58] PEI Y, PEI R, LIANG X, et al. CdS-nanowires flexible photo-detector with Ag-nanowires electrode based on non-transfer process[J]. Scientific Reports, 2016, 6: doi: 10.1038/srep21551.
[59] ZHENG J, ZHANG K, FANG Y, et al. How to optimize the interface between photosensitizers and TiO2 nanocrystals with molecular engineering to enhance performances of dye-sensitized solar cells?[J]. ACS Applied Materials & Interfaces, 2015, 7(45): 66-76.
[60] HU J, LI W, DUAN Y, et al. Single-particle performances and properties of LiFePO4 nanocrystals for Li-ion batteries[J]. Advanced Energy Materials, 2017, 7(5): doi: 10.1002/aenm.201601894.
[61] HU J, JIANG Y, CUI S, et al. 3D-Printed Cathodes of LiMn1−xFexPO4 nanocrystals achieve both ultrahigh rate and high capacity for advanced lithium-ion battery[J]. Advanced Energy Materials, 2016, 6(18): 1600856.
[62] QIAO R X, ZHANG M J, LIU Y D, et al. A novel real-time state-of-health and state-of-charge co-estimation method for LiFePO4 battery[J]. Chinese Physics Letters, 2016, 33(7): 182-185.
[63] MEI Z, ZHANG B, ZHENG J, et al. Tuning Cu dopant of Zn0.5Cd0.5S nanocrystals enables high-performance photocatalytic H2 evolution from water splitting under visible-light irradiation[J]. Nano Energy, 2016, 26: 405-416.
|