[1] YANG Z, ZHANG J, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613.
[2] 李琼慧, 王彩霞, 张静, 宁娜. 适用于电网的先进大容量储能技术发展路线图[J]. 储能科学与技术, 2017, 6(1): 141-146.
LI Qionghui, WANG Caixia, ZHANG Jing, NING Na. A roadmap for large scale energy storage for grid-level applications[J]. Energy Storage Science and Technology, 2017, 6(1): 141-146.
[3] SHIMOTAKE H, ROGERS G L, CAIRMS E J. Secondary cells with lithium anodes and immobilized fused-salt electrolytes[J]. Industrial and Engineering Chemistry process Design and Development, 1969, 8(1): 51-56.
[4] YEAGER E. Fuel cells: Basic considerations, in power sources division[C]//Proceedings of 12th Annual Battery Research and Development, Fort Monmouth, 1958.
[5] KIM H, BOYSEN D A, NEWHOUSE J M, et al. Liquid metal batteries: Past, present, and future[J]. Chemical Reviews, 2012, 113(3): 2075-2099.
[6] LI H, YIN H, WANG K, et al. Liquid metal electrodes for energy storage batteries[J]. Advanced Energy Materials, 2016, 6(14): 1600483.
[7] ARTSDALEN E R V, YAFFE I S. Electrical conductance and density of molten salt systems: KCl-LiCl, KCl-NaCl and KCl-KI[J]. The Journal of Physical Chemistry, 1955, 59(2): 118-127.
[8] MASSET P, HENRY A, POINSO J Y, et al. Ionic conductivity measurements of molten iodide-based electrolytes[J]. Journal of Power Sources, 2006, 160(1): 752-757.
[9] LEISER D B, JRO J W. The system LiI-KI[J]. Journal of the American Ceramic Society, 1967, 50(1): 60.
[10] SANGSTER J, PELTON A D. Phase diagrams and thermodynamic properties of the 70 binary alkali halide systems having common ions[J]. Journal of Physical & Chemical Reference Data, 1987, 16(3): 509-561.
[11] SELMAN J R, DENUCCIO D K, SY C J, et al. Cheminform abstract: EMF studies of lithium-rich lithium-aluminum alloys for high-energy secondary batteries[J]. Physical Inorganic Chemistry, 1977, 8(47): 1160-1164.
[12] REDEY L, GUIDOTTIR A. Re-evaluation of the eutectic region of the LiBr-KBr-LiF system[C]//Power Sources Conference, 1996.
[13] REDEY L, MCPARLAND M, GUIDOTTI R. Resistivity measurements of halide-salt/MgO separators for thermal cells[C]. Power Sources Symposium, Proceedings of the International. IEEE Xplore, 1990: 128-131.
[14] KAUN T D. Li-Al/FeS2cell with LiCl-LiBr-KBr electrolyte[J]. Journal of the Electro- Chemical Society, 1985, 132(12): 3063-3064.
[15] MAMANTOY G, BLANDER M, HUSSEY C, et al. Proceedings of the joint international symposium on molten salts[C]//Electrochemical Society Pennington NJ, 1987.
[16] VISSERS D R, REDEY L, KAUN T D. Molten salt electrolytes for high-temperature lithium cells[J]. Journal of Power Sources, 1989, 26(1/2): 37-48.
[17] JANZ G J, KREBS U, SIEGENTHALER H, et al. Molten salts: Volume 3 nitrates, nitrites, and mixtures: Electrical conductance, density, viscosity, and surface tension data[J]. Journal of Physical and Chemical Reference Data, 1972(3): 581-746.
[18] MASSET P, SCHOEFFERT S, POINSO J, et al. LiF-LiCl-LiI vs. LiF-LiBr-KBr as molten salt electrolyte in thermal batteries[J]. Journal of the Electrochemical Society, 2005, 152(2): A405-A410.
[19] JOHNSON C E, HATHAWAY E J. Solid-liquid phase equilibria for the ternary systems Li(F,Cl,I) and Na(F,Cl,I)[J]. Journal of the Electrochemical Society, 1971, 118(4): 631-634.
[20] MCMURDIE H F, HALL F P. Phase diagrams for ceramists, supplement No.1[J]. Journal of the American Ceramic Society, 2006, 32(1): 154-164.
[21] JOHNSON C E, FOSTER M S. Phase equilibrium studies of lithium halide-containing electrolytes[J]. Journal of the Electrochemical Society, 1969, 116(11): 1612-1613.
[22] BADER M, BUSSE C A. Wetting by sodium at high temperatures in pure vapour atmosphere[J]. Journal of Nuclear Materials, 1977, 67(3): 295-300.
[23] BREDIG M A. Mixtures of metals with molten salts[R]. Oak Ridge National Lab, Tenn, 1963, doi: 10.2172/4658668.
[24] BREDIG M A, JOHNSON J W, SMITH J R W T. Miscibility of liquid metals with salts. I. the sodium-sodium halide systems[J]. Journal of the American Chemical Society, 1955, 77(2): 307-312.
[25] BREDIG M A, BRONSTEIN H R. Miscibility of liquid metals with salts. IV. The sodium-sodium halide systems at high temperatures[J]. The Journal of Physical Chemistry, 1960, 64(1): 64-67.
[26] UKSHEk E A, BUKUN N G. The dissolution of metals in fused halides[J]. Russian Chemical Reviews, 1961, 30(2): 243-273.
[27] NING X, PHADKE S, CHUNG B, et al. Self-healing Li-Bi liquid metal battery for grid-scale energy storage[J]. Journal of Power Sources, 2014, 275: 370-376.
[28] BRADWELL D J, KIM H, SIRK A H C, et al. Magnesium-antimony liquid metal battery for stationary energy storage[J]. Journal of the American Chemical Society, 2012, 134(4): 1895-1897.
[29] WANG K, JIANG K, CHUNG B, et al. Lithium-antimony-lead liquid metal battery for grid-level energy storage[J]. Nature, 2014, 514(7522): 348-350.
[30] LI H, WANG K, CHENG S, JIANG K. High performance liquid metal battery with environmentally friendly antimony-tin positive electrode[J]. Acs Applied Materials & Interfaces, 2016, 8(20): 12830-12835.
[31] 李浩秒. 基于熔盐电化学的新型储能材料与技术研究[D]. 武汉: 华中科技大学, 2016.
[32] 陶宏伟. 液态金属高温电池密封材料的研究[D]. 武汉: 华中科技大学, 2014.
TAO Hongwei. A dissertation submitted in partial fulfillment of the requirments for the degree of master of engineering[D]. Wuhan: Huazhong University of Science and Technology, 2014.
[33] 蒋凯, 黎朝晖, 王康丽, 等. 耐腐蚀密封绝缘装置及中高温储能电池, CN205960043U[P]. 2017-02-15.
[34] 王大磊, 王康丽, 程时杰, 蒋凯. 液态金属电池储能特性建模及荷电状态估计[J]. 中国电机工程学报, 2017(8): 2253-2261.
WANG Dalei, WANG Kangli, CHENG Shijie, JIANG Kai. Modeling of energy storage properties and SOC estimation for liquid metal batteries[J]. Proceedings of the CSEE, 2017(8): 2253-2261.
[35] 蒋凯, 李浩秒, 李威, 程时杰. 几类面向电网的储能电池介绍[J]. 电力系统自动化, 2013, 37(1): 47-53.
JIANG Kai, LI Haomiao, LI Wei, CHENG Shijie. On several battery technologies for power grids[J]. Automation of Electric Power Systems, 2013, 37(1): 47-53.
|