储能科学与技术 ›› 2017, Vol. 6 ›› Issue (5): 990-999.doi: 10.12028/j.issn.2095-4239.2017.0077

• 特约文章 • 上一篇    下一篇

材料基因组技术在新能源材料领域应用进展

林  海,郑家新,林  原,潘  锋   

  1. 北京大学深圳研究生院新材料学院,广东 深圳 518055
  • 收稿日期:2017-05-31 修回日期:2017-06-14 出版日期:2017-09-01 发布日期:2017-09-01
  • 通讯作者: 潘锋,教授,聚焦新能源材料基因组科学与技术以及动力与储能电池及关键材料、新型太阳能电池与关键材料的研发,E-mail:panfeng@pkusz.edu.cn.。
  • 作者简介:林海(1965—),男,硕士,聚焦材料基因组高通量检测技术、清洁能源材料与器件测评及面向产业应用研究,E-mail:linhai@pkusz.edu.cn
  • 基金资助:
    国家重点研发计划项目(2016YFB0700600)。

The development of material genome technology in the field of new energy materials

LIN Hai, ZHENG Jiaxin, LIN Yuan, PAN Feng   

  1. School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
  • Received:2017-05-31 Revised:2017-06-14 Online:2017-09-01 Published:2017-09-01

摘要: 材料基因组融合了材料的高通量计算、高通量制备、高通量的检测及数据库系统,是材料研发的“范式革命”,以其深刻的科学内涵、重大的应用潜力,将加速新材料发现和应用。本文重点讨论材料基因组用于新能源材料的研发,来缩短新能源材料的“发现—研发—生产—应用”周期,介绍国际上代表性的Materials Project和OQMD两个材料基因组平台,及一些重要的材料基因组计算技术,如材料构象表征、高通量计算及筛选、机器学习、神经网络技术、优化算法和新型的高通量制备和表征技术等在新能源材料研发中的应用,并对下一步材料基因组的发展提出了展望,如通过发展高精度高通量计算、利用人工智能开发高通量实验系统和平台,产生材料大数据,并通过智能计算充分利用好材料大数据,打造计算与实验融合的材料基因组大数据人工智能系统,加速新能源材料的发现与应用。

关键词: 材料基因组, 新能源材料, 高通量计算, 高通量实验

Abstract: Material genome is the very important frontier technology in material field, which owns profound scientific content and significant application potential. In the last decades, materials science and technology realized revolutionary leap with the help of materials genome. This technology has been used in energy material fields and reduces the lifecycle of “Discovery-Research and Development—Production—Application”, which owns important significance of application. This paper introduced the progress of two typical materials genome platform of Materials Project and The Open Quantum Materials Database (OQMD), and concluded the guidance technology of material genome used in new energy materials, such as material conformational representation, high throughput calculation and screening, machine learning, nerual network technique and optimization algorithm. Especially put forward, people should increase the integration of high throughput calculation and experiments, and base this and combine industrial 4.0 concept, exerting system fusion effect of material genome technology, sharing big data self-worth, and finally build material genomic large data artificial intelligence system equipped with the ability of self-selection and self-evolution, and establish new model of material development of digital intelligence.

Key words: material genome, new energy material, high throughput calculation, high throughput experiments