储能科学与技术 ›› 2017, Vol. 6 ›› Issue (6): 1159-.doi: 10.12028/j.issn.2095-4239.2017.0045

• 特约文章 • 上一篇    下一篇

基于非钠金属负极的有机钠离子电池研究进展

张慧敏1,2,3,明  海1,3,张文峰1,3,文越华1,3,杨裕生1,3,明  军4   

  1. 1防化研究院,北京 100191;2北京理工大学,北京 100081;3先进化学蓄电技术与材料北京市重点实验室,北京 100191; 4中国科学院长春应用化学研究所,吉林 长春 130022
  • 收稿日期:2017-04-13 修回日期:2017-05-15 出版日期:2017-11-01 发布日期:2017-11-01
  • 通讯作者: 杨裕生,院士,E-mail:yangyush32@ 126.com。
  • 作者简介:张慧敏(1989—),女,博士研究生,主要研究方向为高安全、长寿命和低成本钠基储能电池的基础科学问题,E-mail:zhanghuimin_ 506@126.com
  • 基金资助:
    国家重点研发计划项目(2016YFB0901503)

Non-aqueous sodium-ion batteries based on the anode of non-metallic sodium

ZHANG Huimin1,2,3, MING Hai 1,3, ZHANG Wenfeng 1,3, WEN Yuehua1,3, YANG Yusheng 1,3 , MING Jun4   

  1. 1Research Institute of Chemical Defense, Beijing 100191, China; 2Beijing Institute of Technology, Beijing 100081, China; 3Beijing Key Laboratory of Advanced Chemical Energy Storage Technology and Materials, Research Institute of Chemical Defense, Beijing 100191, China; 4Changchun Institute of Applied Chemistry, Changchun 130022, Jilin, China
  • Received:2017-04-13 Revised:2017-05-15 Online:2017-11-01 Published:2017-11-01

摘要: 钠和锂元素具有相似的物化性质,且钠资源丰富、分布广泛、原料成本低廉,使得钠离子电池在大规模储能领域表现出极大的应用潜力。与水系钠离子电池相比,有机体系钠离子电池的电化学窗口宽(1.5~4.5 V)、能量密度较高(100~350 W·h/kg),受到了广泛的关注。目前有机系钠离子电池的研究工作多数是在半电池体系(以钠金属为对电极)中针对单一的正极或负极材料进行性能评价,但是金属钠,因为其过于活泼的化学性质会带来严重的安全问题,使其在液态有机体系中几乎不太可能作为商业负极来使用。为了贴近实际应用,构建以非钠金属负极为主的商业化有机钠离子电池体系意义重大。本文基于碳材料、钛基化合物、钠合金、过渡金属氧化物等非钠金属负极材料,并以它们为线索重点介绍一些性能较为突出的有机钠离子电池体系,并指出要实现钠离子电池的产业化,除了要开发高性能、低成本的正负极材料以外,深入研究正/负电极材料相互匹配问题、电解液和黏结剂的优化、隔膜改性等机理也至关重要。
关键词:钠

关键词: 离子电池, 钠金属, 负极材料, 有机电解液, 全电池

Abstract:

 Sodium element has similar physical and chemical properties with lithium, and sodium resource is abundant in the earth, so research interest on sodium ion batteries has rapidly increased recently, particularly for the grid energy storage. Compared with aqueous sodium-ion batteries, non-aqueous sodium-ion batteries have attracted more attention due to its wider electrochemical window (1.5~4.5 V) and higher energy density (100~350 W·h·kg1). Generally, electrochemical performance of the non-aqueous sodium-ion batteries is evaluated using half cells with metallic sodium as a counter electrode. However, it may cause some potential safety risks when used metallic sodium in sodium-ion batteries, so research on non-aqueous sodium-ion batteries based on the anodes of non-metallic sodium deserves much more attention, which will promote the practical application of sodium-ion battery. Herein, we will introduce some typical sodium-ion batteries based on the anodes of non-metallic sodium, including carbon-based materials, Ti-based compounds, Na-alloys and transition metal oxides. In order to realize the commercialization of sodium-ion batteries, it is needed to explore new cathode and anode materials with better performance and low cost. In addition, mutual matching issues between cathode and anode, designing better electrolyte and binders and separator modification are also important in promoting the commercial applications of sodium-ion batteries in future.

Key words: sodium ion batteries, metallic sodium, negative electrode materials, organic electrolyte, full cell