储能科学与技术 ›› 2018, Vol. 7 ›› Issue (5): 888-896.doi: 10.12028/j.issn.2095-4239.2018.0085
王莉, 何向明, 高剑, 李建军, 姜长印
收稿日期:
2018-06-04
修回日期:
2018-06-22
出版日期:
2018-09-01
发布日期:
2018-09-01
通讯作者:
何向明,研究员,研究方向为能源材料与化工,E-mail:hexm@tsinghua.edu.cn
作者简介:
王莉(1977-),女,副研究员,研究方向为先进电池材料化学与材料分析,E-mail:wang-l@tsinghua.edu.cn
基金资助:
WANG Li, HE Xiangming, GAO Jian, LI Jianjun, JIANG Changyin
Received:
2018-06-04
Revised:
2018-06-22
Online:
2018-09-01
Published:
2018-09-01
Contact:
12012.28/j.issn.2095-4239.2018.0085
摘要: 本文对锂离子电池正极材料生产制备技术的发展历史进行了回顾,对锂离子电池正极材料的发展方向进行了分析。20世纪末,从锂离子电池正极材料加工性能和电池性能的角度出发,清华大学研究团队提出了控制结晶制备高密度球形前驱体的技术,结合后续固相烧结工艺,提出了制备含锂电极材料的产业技术。其中,控制结晶方法制备前驱体,可以在晶胞结构、一次颗粒组成与形貌、二次颗粒粒度与形貌,以及颗粒表面化学4个层面对材料的性能进行调控与优化。利用该技术工艺生产的材料具有颗粒粒度及形貌易控制、均匀性好、批次一致性和稳定性好的特点,可以同时满足电池对于材料电化学性能和加工性能的综合要求。因材料的堆积密度高,尤其适用于高比能量电池。该技术工艺适用于多种正极材料,并适合于大规模生产,随着时间的推移,逐步被证明是锂离子电池正极材料的最佳生产技术工艺,得到了现今产业界的普遍接受和认可。这也是我国科学工作者对国际锂离子电池产业做出的重要贡献之一。
中图分类号:
王莉, 何向明, 高剑, 李建军, 姜长印. 锂离子电池正极材料生产技术的发展[J]. 储能科学与技术, 2018, 7(5): 888-896.
WANG Li, HE Xiangming, GAO Jian, LI Jianjun, JIANG Changyin. Manufacturing method for cathode materials of Li-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(5): 888-896.
[1] ZU Chenxi, LI Hong. Thermodynamic analysis on energy densities of batteries[J]. Energy & Environmental Science, 2011, 4(8):2614-2624. [2] NELSON P. Modeling the performance and cost of lithium-ion batteries for electric vehicles[R]. Illinois:Chemical Sciences and Engineering Division, 2011. [3] BERG E J, VILLEVIEILLE C, STREICH D, et al. Rechargeable batteries:Grasping for the limits of chemistry[J]. Journal of the Electrochemical Society, 2015, 162(14):A2468-A2475. [4] 吴娇杨, 刘品, 胡勇胜, 等. 锂离子电池和金属锂离子电池的能量密度计算[J]. 储能科学与技术, 2016, 5(4):443-453. WU Jiaoyang, LIU Pin, HU Yongsheng, et al. Calculation on energy densities of lithium ion batteries and metallic lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(4):443-453. [5] 李国华, 张宏生, 王莉, 等. 叠片式锂离子电池能量的影响因素[J]. 电池, 2016, 46(2):69-71. LI Guohua, ZHANG Hongsheng, WANG Li, et al. Influence factors of energy of laminated Li-ion battery[J]. Battery Bimonthly, 2016, 46(2):69-71. [6] 李国华, 张宏生, 李建军, 等. 质量比能量型锂离子电池型号设计——电池质量公式[J]. 储能科学与技术, 2015, 4(4):412-416. LI Guohua, ZHANG Hongsheng, LI Jianjun, et al. Size design of lithium-ion battery with high mass specific energy——Battery mass formula[J]. Energy Storage Science and Technology, 2015, 4(4):412-416. [7] 王莉, 谢乐琼, 张干, 等. 锂离子电池一致性筛选研究进展[J]. 储能科学与技术, 2018, 7(2):194-202. WANG Li, XIE Leqiong, ZHANG Gan, et al. Research progress in the consistency screening of Li-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(2):194-202. [8] 李阳兴, 万春荣, 姜长印. 以β-Co(OH)2为前驱体的锂离子电池正极材料LiCoO2[J]. 清华大学学报(自然科学版), 1999, 39(12):44-46. LI Yangxing, WAN Chunrong, JIANG Changyin. Highly-active cathode material LiCoO2for lithium-ion battery through β-Co(OH)2 as precursors[J]. J. Tsinghua Univ. (Sci. & Tech.), 1999, 39(12):44-46. [9] YING Jierong, JIANG Changyin, WAN Chunrong. Preparation and characterization of high-density spherical LiCoO2 cathode material for lithium ion batteries[J]. Journal of Power Sources, 2004, 129(2):264-269. [10] 应皆荣, 万春荣, 姜长印. 高密度球形LiCoO2的制备及性能研究[J]. 电源技术, 2004, 28(9):525-527. YING Jierong, WAN Chunrong, JIANG Changyin. Preparation and characterization of high-density spherical LiCoO2[J]. Chinese Journal of Power Sources, 2004, 28(9):525-527. [11] 应皆荣, 高剑, 姜长印, 等. 控制结晶法制备球形锂离子电池正极材料的研究进展[J]. 无机材料学报, 2006, 21(2):291-297. YING Jierong, GAO Jian, JIANG Changyin, et al. Research and development of preparing spherical cathode materials for lithium ion batteries by controlled crystallization method[J]. Journal of Inorganic Materials, 2006, 21(2):291-297. [12] 张国昀, 姜长印, 万春荣, 等. 控制结晶法合成表面富含钴的尖晶石LiMn2-xCoxO4[J].电源技术, 2003, 27(1):17-19+23. ZHANG Guoyun, JIANG Changyin, WAN Chunrong, et al. Synthesis of spinel LiMn2-xCoxO4 with high cobalt content at surface by controlled crystallization[J]. Chinese Journal of Power Sources, 2003, 27(1):17-19+23. [13] 王要武, 蔡砚, 何向明, 等. 尖晶石LiMn2O4作为锂离子正极材料的研究与开发[J]. 无机材料学报, 2004, 19(1):1-8 WANG Yaowu, CAI Yan, HE Xiangming, et al. Development of spinel LiMn2O4 for positive electrode material of Li-ion batteries[J]. Journal of Inorganic Materials, 2004, 19(1):1-8 [14] 蔡砚, 王要武, 何向明, 等. 球形尖晶石LiMn2O4的制备及其改性[J]. 无机材料学报, 2004, 19(5):1058-1064. CAI Yan, WANG Yaowu, HE Xiangming, et al. Spherical spinel LiMn2O4 preparation and its electrochemical performance improvement[J]. Journal of Inorganic Materials, 2004, 19(5):1058-1064. [15] HE Xiangming, LI Jianjun, CAI Yan, et al. Fluorine doping of spherical spinel LiMn2O4[J]. Solid State Ionics, 2005, 176:2571-2576. [16] 金拟粲, 应皆荣, 姜长印, 等. 尖晶石LiMn2O4表面包覆MgO及其性能[J]. 功能材料, 2004, 35(6):725-726. JIN Nican, YING Jierong, JIANG Changyin, et al. Surface modif ication and characterization of spinel LiMn2O4 coated with MgO[J]. Fuctional Materials, 2004, 35(6):725-726. [17] HE Xiangming, LI Jianjun, CAI Yan, et al. Preparation of co-doped spherical spinel LiMn2O4 cathode materials for Li-ion batteries[J]. Journal of Power Sources, 2005, 150:216-222. [18] HE Xiangming, LI Jianjun, CAI Yan, et al. Preparation of spherical spinel LiMn2O4 cathode material for lithium ion batteries[J]. Journal of Solid State Electrochemistry, 2005, 9:438-444. [19] 何向明, 蒲薇华, 蔡砚, 等. 基于控制结晶法制备的锂离子电池正极材料球形锰酸锂[J].中国有色金属学报, 2005, 15(9):1390-1395. HE Xiangming, PU Weihua, CAI Yan, et al. Preparation of spherical LiMn2O4 for Li-ion batteries based on controlled crystallization[J]. The Chinese Journal of Nonferrous Metals, 2005, 15(9):1390-1395. [20] GUO Shaohua, HE Xiangming, PU Weihua, et al. SnO2 modification of spherical spinel LiMn2O4 cathode materials for Li-ion batteries[J]. International Journal of Electrochemical Science, 2006, 1:189-193. [21] 何向明, 蒲薇华, 姜长印, 等. 表面掺杂Al的球形尖晶石LiMn2O4的高温循环性能[J]. 稀有金属材料与工程, 2006, 35(12):1987-1990. HE Xiangming, PU Weihua, JIANG Changyin, et al. High temperature cycleability of spherical spinel LiMn2O4 with Al-doped surface[J]. 2006, 35(12):1987-1990. [22] 郭少华, 何向明, 曾庆轩, 等. 表相掺杂Co的球形LiMn2O4制备及其电化学性能[J]. 化工新型材料, 2007, 35(3):34-36. GUO Shaohua, HE Xiangming, ZENG Qingxuan, et al. Preparation and electrochemical properties of spherical LiMn2O4 surface doped with cobalt[J]. New Chemical Materiacs, 2007, 35(3):34-36. [23] 唐昌平, 应皆荣, 姜长印, 等. 磷酸铁锂正极材料改性研究进展[J]. 化工新型材料, 2005, 33(9):22-25. TANG Changping, YING Jierong, JIANG Changyin, et al. Research progress in the enhancing property of lithium iron phosphate[J]. New Chemical Materials, 2005, 33(9):22-25. [24] YING Jierong, LEI Min, JIANG Changyin, et al. Preparation and characterization of high-density spherical Li0.97Cr0.01FePO4/C cathode material for lithium ion batteries[J]. Journal of Power Sources, 2006, 158:543-549. [25] 唐昌平, 应皆荣, 雷敏, 等. 控制结晶-微波碳热还原法制备高密度LiFePO4/C[J]. 电化学, 2006, 12(2):188-190. TANG Changping, YING Jierong, LEI Min, et al. High density LiFePO4/C synthesized by controlled crystallization and microwave carbon thermal reduction[J]. Electrochemistry, 2006, 12(2):188-190. [26] 雷敏, 应皆荣, 姜长印, 等. 高密度球形LiFePO4的合成及性能[J]. 电源技术, 2006, 30(1):11-13. LEI Min, YING Jierong, JIANG Changyin,et al. Preparation and characteristic of high-density spherical LiFePO4[J]. Chinese Journal of Power Sources, 2006, 30(1):11-13. [27] YANG Gai, JIANG Changyin, HE Xiangming, et al. Synthesis of size-controllable LiFePO4/C cathode material by controlled crystallization[J]. Journal of New Materials for Electrochemical Systems, 2012, 15:75-78. [28] YANG Gai, JIANG Changyin, HE Xiangming, et al. Preparation of V-LiFePO4 cathode material for Li-ion batteries[J]. Ionics, 2012, 18:59-64. [29] 高剑, 李建军, 王莉, 等. 控制结晶-碳热还原制备LiFePO4正极材料[J]. 化工新型材料, 2015, 43(4):61-63+66. GAO Jian, LI Jianjun, WANG Li, et al. Preparation of LiPO4 anode material by controlled crystallization-carbon thermal reduction method[J]. New Chemical Materials, 2015, 43(4):61-63+66. [30] WANG Li, HE Xiangming, SUN Wenting, et al. Crystal orientation tuning of LiFePO4 nanoplates for high rate lithium battery cathode materials[J]. Nano Letters, 2012, 12(11):5632-5636. [31] HUANG Xiankun, HE Xiangming, JIANG Changyin, et al. Reaction mechanisms on solvothermal synthesis of nano LiFePO4 crystals and defect analysis[J]. Industrial & Engineering Chemistry Research, 2017, 56(38):10648-10657. [32] XU Chenghao, WANG Li, HE Xiangming, et al. Formation mechanism and growth habit of olivine-LiFePO4 materials by hydrothermal synthesis[J]. International Journal of Electrochemical Science, 2016, 11:1558-1567. [33] HUANG Chaochao, AI Desheng, WANG Li, et al. LiFePO4 crystal growth during co-precipitation[J]. International Journal of Electrochemical Science, 2016, 11:754-762. [34] 黄贤坤, 何向明, 姜长印, 等. 钒掺杂对溶剂热合成LiFePO4结构和性能的影响[J]. 重庆理工大学学报(自然科学), 2015, 29(7):19-23. HUANG Xiankun, HE Xiangming, JIANG Changyin, et al. Structural and electrochemical characterization of vanadium-doped LiFePO4 via solvothermal synthesis[J]. Journal of Chongqing University of Technology(Natural Science), 2015, 29(7):19-23. [35] HUANG Xiankun, HE Xiangming, JIANG Changyin, et al. Morphology evolution and impurity analysis of LiFePO4 nanoparticles via a solvothermal synthesis process[J]. RSC Advances, 2014(4):56074-56083. [36] HUANG Chaochao,AI Desheng,WANG Li,et al. Rapid synthesis of LiFePO4 by co-precipitation[J]. Chemistry Letters, 2013, 42(10):1191-1193. [37] WANG Li, SUN Wenting, TANG Xianyi, et al. Nano particle LiFePO4 prepared by solvothermal process[J]. Journal of Power Sources, 2013, 244C:94-100. [38] LI Jiangang, ZHAO Pengxiang, DUAN Wanlu, et al. Hydrothermal synthesis of well-dispersed LiMn0.7Fe0.3PO4/C nanocrystalline cathodes for lithium-ion batteries[J]. International Journal of Electrochemical Science, 2015, 10:7371-7379. [39] DAI Zhongjia, WANG Li, YE Feipeng, et al. Influence of anion species on the morphology of solvothermal synthesized LiMn0.9Fe0.1PO4[J]. Electrochimica Acta, 2014, 134:13-17. [40] YE Feipeng, WANG Li, HE Xiangming,et al. Solvothermal synthesis of nano LiMn0.9Fe0.1PO4:Reaction mechanism and electrochemical properties[J]. Journal of Power Sources, 2014, 253:143-149. [41] DAI Zhongjia, WANG Li, HE Xiangming, et al. Morphology regulation of nano LiMn0.9Fe0.1PO4 by solvothermal synthesis for lithium ion batteries[J]. Electrochimica Acta, 2013, 112:144-148. [42] 应皆荣, 万春荣, 姜长印. 以球形α-Ni0.8Co0.2(OH)2制备锂离子电池正极材料LiNi0.8Co0.2O2[J]. 无机材料学报, 2001, 16(5):821-826. YING Jierong, WAN Chunrong, Jiang Changyin. Preparation of LiNi0.8Co0.2O2 cathode material for lithium secondary batteries from spherical α-Ni0.8Co0.2(OH)2[J]. Journal of Inorganic Materials, 2001, 16(5):821-826. [43] 应皆荣, 万春荣, 姜长印, 等. 高密度球形LiNi0.8Co0.2O2的制备及性能[J]. 清华大学学报(自然科学版), 2001, 41(6):75-77. YING Jierong, WAN Chunrong, JIANG Changyin, et al. Preparation and characterization of high-density spherical LiNi0. 8Co0. 2O2[J]. J. Tsinghua Univ. (Sci. & Tech.), 2001, 41(6):75-77. [44] YING Jierong, WAN Chunrong, JIANG Changyin. Preparation and characterization of high-density spherical LiNi0.8Co0.2O2 cathode material for lithium secondary batteries[J]. Journal of Power Sources, 2001, 99(1/2):78-84. [45] 应皆荣, 万春荣, 姜长印. LiNi0.8Co0.2O2的表面修饰及性能[J]. 清华大学学报(自然科学版), 2001, 41(6):78-80. YING Jierong, WAN Chunrong, JIANG Changyin. Surface modif ication and characterization of LiNi0. 8Co0. 2O2[J]. J. Tsinghua Univ. (Sci. &Tech.), 2001, 41(6):78-80. [46] YING Jierong, WAN Chunrong, JIANG Changyin、Surface treatment of LiNi0.8Co0.2O2 cathode material for lithium secondary batteries[J]. Journal of Power Sources, 2001, 102(1/2):162-166. [47] 赵方辉, 应皆荣, 何向明, 等. LiNi0.8Co0.2O2表面包覆MgO及其性能[J]. 电源技术, 2003, 27(1):14-16. ZHAO Fanghui, YING Jierong, HE Xiangming, et al. Surface modification and characterization of LiNi0.8Co0.2O2 coated with MgO[J]. Chinese Journal of Power Sources, 2003, 27(1):14-16. [48] LIU Z L, YU A, LEE J Y. Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries[J]. J. Power Sources, 1998, (81/82):416-419. [49] OHZUKU T, MAKIMURA Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2for lithium-ion batteries[J]. Chem. Lett., 2001, 30:642-644. [50] LI Jiangang, FAN Maosong, HE Xiangming, et al. TiO2 coating of LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries[J]. Ionics, 2006, 12:215-218. [51] LI Jiangang, HE Xiangming, ZHAO Rusong, et al. Stannum doping of layered LiNi3/8Co2/8Mn3/8O2 cathode materials with high rate capability for Li-ion batteries[J]. Journal of Power Sources, 2006, 158:524-528. [52] LI Jiangang, HE Xiangming, FAN Maosong, et al. Synthesis of spherical LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries[J]. Ionics, 2006, 12:77-80. [53] WANG Li, LI Jiangang, HE Xiangming, et al. Recent advances in layered LiNixCoyMn1-x-yO2 cathode materials for lithium ion batteries[J]. Journal of Solid State Electrochemistry, 2009, 13:1157-1164. [54] LI Jiangang, WANG Li, ZHANG Qian,et al. Electrochemical performance of SrF2-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries[J]. Journal of Power Sources, 2009, 190:149-153. [55] LI Jiangang, WANG Li, ZHANG Qian, et al. Synthesis and characterization of LiNi0.6Mn0.4-xCoxO2 as cathode materials for Li-ion batteries[J]. Journal of Power Sources, 2009, 189:28-33. [56] 张倩, 李建刚, 谢娇娜, 等. AlF3包覆改性LiNi0.4Co0.2Mn0.4O2正极材料的制备与性能[J]. 化工新型材料, 2009, 37(12):26-29. ZHANG Qian, LI Jiangang, XIE Jiaona, et al. Synthesis and characterization of AlF3-coated LiNi0.4Co0.2Mn0.4O2 cathode materials for Li-ion batteries[J]. New Chemical Materials, 2009, 37(12):26-29. [57] LI Jiangang, ZHANG Qian, LIU Chao, et al. ZrO2 coating of LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries[J]. Ionics, 2009, 15:493-496. [58] HUANG Zhenlei, GAO Jian, HE Xiangming, et al. Well-ordered spherical LiNixCo1-2xMnxO2 cathode materials synthesized from cobolt concentration-gradient precursors[J]. Journal of Power Sources, 2012, 202:284-290. [59] 谢娇娜, 李建刚, 何向明. 碳酸盐共沉淀法制备LiNi0.8Co0.2-xAlxO2[J]. 电池, 2010, 40(2):90-92. XIE Jiaona, LI Jiangang, HE Xiangming. Preparation of LiNi0.8Co0.2-xAlxO2 by carbonate co-precipitation process[J]. Battery Bimonthly, 2010, 40(2):90-92. [60] 姜长印, 万春荣, 张泉荣, 等. 高密度高活性球形氢氧化镍的制备与性能控制[J]. 电源技术, 1997, 21(6):243-248. JIANG Changyin, WAN Chunrong, ZHANG Quanrong, et al. Preparation of the high-density, high-activity, and spherical nickel hydroxide and its performance controll[J]. Chinese Journal of Power Sources, 1997, 21(6):243-248. [61] 万春荣, 章金基, 姜长印. 氢氧化亚镍的性能与结构之间关系的研究[J]. 清华大学学报(自然科学版), 1998, 38(5):95-98. WAN Chunrong, ZHANG Jinji, JIANG Changyin. Study on the relat ionship between structure and property of nickel hydroxide[J]. Journal of Tsinghua University (Sci. & Tech.), 1998, 38(5):95-98. [62] 姜长印, 张泉荣, 杜晓华, 等. 高活性球形氢氧化镍的密度控制[J]. 电源技术, 2000, 24(4):207-208+213. JIANG Changyin, ZHANG Quanrong, DU Xiaohua, et al. Density control of spherical nickel hydroxide[J]. Chinese Journal of Power Sources, 2000, 24(4):207-208+213. [63] 杜晓华, 张泉荣, 姜长印, 等. 高密度球形Ni(OH) 2的表面修饰[J]. 电源技术, 2001, 25(2):78-80. DU Xiaohua, ZHANG Quanrong, JIANG Changyin, et al. Surface modification of high density spherical Ni(OH)2[J]. Chinese Journal of Power Sources, 2001, 25(2):78-80. [64] 杜晓华, 张泉荣, 姜长印, 等. 球形Ni(OH)2包覆钴化合物的积分进料工艺[J]. 清华大学学报(自然科学版), 2001, 41(6):71-74. DU Xiaohua, ZHANG Quanrong, JIANG Changyin, et al. Integral feeding technique for coating spherical Ni(OH)2 particles with cobalt compounds[J]. Journal of Tsinghua University (Sci.& Tech.), 2001, 41(6):71-74. [65] 杜晓华, 姜长印. 动力电池用铝代氢氧化镍结构及电化学性能[J]. 电源技术, 2002, 26(2):74-77. DU Xiaohua, JIANG Changyin. Structural and electrochemical performance of aluminum substituted nickel hydroxide used in power battery[J]. Chinese Journal of Power Sources, 2002, 26(2):74-77. [66] 杜晓华, 姜长印. 覆钴层晶型对球形Ni(OH)2电化学性能的影响[J]. 电源技术, 2002, 26(5):346-347+396. DU Xiaohua, JIANG Changyin. Effects of crystal structures of cobalt compounds on electrochemical properties of spherical Ni(OH)2[J]. Chinese Journal of Power Sources, 2002, 26(5):346-347+396. [67] 米欣, 姜长印, 阎杰, 等. 球型Ni(OH)2表面包覆Y(OH)3及其高温充放电性能[J]. 无机化学学报, 2004, 20(2):164-168. MI Xin, JIANG Changyin, YAN Jie, et al. The preparation and the high-temperature properties of the spherical Ni(OH)2 coated with Y(OH)3[J]. Chinese Journal of Inorganic Chemistry, 2004, 20(2):164-168. [68] 米欣, 姜长印, 耿鸣明, 等. 掺钇球形Ni(OH)2的合成及高温性能研究[J]. 电池, 2004, 34(1):13-15. MI Xin, JIANG Changyin, GENG Mingming, et al. Synthesis and high-temperature charge/discharge performance of the Y3+-doped spherical Ni(OH)2[J]. Battery Bimonthly, 2004, 34(1):13-15. [69] HE Xiangming, LI Jianjun, CHEN Hongwei, et al. Controlled crystallization and granulation of nano-scale beta-Ni(OH)2 cathode materials for high power Ni-MH batteries[J]. Journal of Power Sources, 2005, 152:285-290. [70] HE Xiangming, LI Jianjun, CHEN Hongwei, et al. Preparation of nano-scale Ni(OH)2 based on controlled crystallization[J]. Journal of Inorganic Materials, 2005, 20:1317-1321. [71] PU Weihua, HE Xiangming, LI Jianjun, et al. Controlled crystallization of spherical active cathode materials for NiMH and Li-ion rechargeable batteries[J]. Journal of New Materials for Electrochemical Systems, 2005, 8:235-241. [72] 何向明, 王莉, 任建国, 等. 控制结晶工艺制备球形材料[J]. 中国工程科学, 2006, 8(7):36-41. HE Xiangming, WANG Li, REN Jianguo, et al. Preparation of spherical materials based on controlled crystallization[J]. Engineering Science, 2006, 8(7):36-41. [73] 何向明, 王莉, 虞兰剑. 锂离子电池正极材料规模化生产技术[M]. 北京:清华大学出版社, 2017. HE Xiangming, WANG Li, YU Lanjian. Large-scale production technology of cathode materials for lithium ion batteries[M]. Beijing:Tsinghua University Press, 2017. [74] 常照荣, 吴锋, 徐秋红, 等. 锂离子蓄电池正极材料制备方法的新进展[J]. 河南师范大学学报(自然科学版), 2005, 33(1):63-68. CHANG Zhaorong, WU Feng, XU Qiuhong, et al. New development of preparation methods of positive materials for lithium ion batteries[J]. Journal of Henan Normal University(Natural Science), 2005, 33(1):63-68. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[7] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[8] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[9] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[10] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[11] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[12] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[13] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[14] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[15] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||