储能科学与技术 ›› 2019, Vol. 8 ›› Issue (1): 180-190.doi: 10.12028/j.issn.2095-4239.2018.0193

• 研究及进展 • 上一篇    下一篇

基于动态时间规整和多维标度策略的串联锂离子电池组异常电池可视化识别方法

钟国彬1, 沈佳妮2, 徐凯琪1, 王乾坤2, 贺益君2, 苏伟3, 马紫峰2   

  1. 1 广东电网有限责任公司电力科学研究院, 广东 广州 510080;
    2 上海交通大学化学工程系, 上海 200240;
    3 广东电科院能源技术有限公司, 广东 广州 510080
  • 收稿日期:2018-09-05 修回日期:2018-09-28 出版日期:2019-01-01 发布日期:2018-10-25
  • 通讯作者: 贺益君,副研究员,主要研究方向为能量储存与转换及电池管理系统,E-mail:heyijun@sjtu.edu.cn。
  • 作者简介:钟国彬(1984-),男,博士,主要研究方向为化学储能技术及储能在电网的应用,E-mail:zhongguobin001@163.com
  • 基金资助:
    南方电网公司科技项目(GDKJXM00000039)。

Dynamic time warping and multidimensional scaling approach based abnormal battery visual recognition for series-connected lithium-ion batteries pack

ZHONG Guobin1, SHEN Jiani2, XU Kaiqi1, WANG Qiankun2, HE Yijun2, SU Wei3, MA Zifeng2   

  1. 1 Electric Power Research Institute of Guangdong Power Grid Co. Ltd., Guangzhou 510080, Guangdong, China;
    2 Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    3 Guangdong Diankeyuan Energy Technology Co. Ltd., Guangzhou 510080, Guangdong, China
  • Received:2018-09-05 Revised:2018-09-28 Online:2019-01-01 Published:2018-10-25

摘要: 精确、可靠地识别异常电池是保障电池系统安全、稳定运行的有效手段。但是,从实时测量得到的电流、电压和温度有限外部信息,推断内阻、容量等电池内部信息,并识别异常电池难度很大。本工作针对串联锂离子电池组,基于各单体电压测量数据,提出了一种融合动态时间规整和多维标度策略的异常电池识别方法。通过采用动态时间规整策略,计算动态时间规整距离相似性指标,以消除电池组中荷电状态不一致的影响;进而结合多维标度法提取异常特征参数,实现异常电池可视化识别。通过电池系统仿真实验,验证了所提方法的有效性,为异常电池在线识别提供了一种有效技术。

关键词: 锂离子电池组, 动态时间规整, 多维标度, 异常电池识别

Abstract: Accurate and reliable recognition of abnormal batteries is of vital to ensure the stable and safe operation of the battery system. However, it is difficult to deduce the internal information of the battery such as internal resistance and capacity from the limited external information of real-time measured current, voltage and temperature, and consequently to identify abnormal cells. In this paper, based on the voltage measurement of each cell in series lithium-ion batteries pack, an abnormal battery recognition method is proposed, in which dynamic time warping and multi-dimensional scaling strategy are properly combined. The dynamic time warping strategy is used to calculate the dynamic time warping distance to eliminate the effect of inconsistent state of charge in the battery pack, and then the multi-dimensional scaling method is used to extract the abnormal features to achieve visual recognition of abnormal batteries. The effectiveness of the proposed method is demonstrated by battery system simulation results. The results show that the proposed method is a potential promising technology for on-line recognition of abnormal batteries.

Key words: series-connected lithium-ion batteries, dynamic time warping, multidimensional scaling, abnormal battery recognition

中图分类号: