[1] 巩俊强, 邓浩, 谢莹华. 储能技术分类及国内大容量蓄电池储能技术比较[J].中国科技信息, 2012(9):139-140. GONG Junqiang, DENG Hao, XIE Yinghua. Classification of energy storage technologies and comparison of domestic large capacity battery storage technologies[J]. China Science and Technology Information, 2012(9):139-140.
[2] 王朔, 周格, 禹习谦, 等. 储能技术领域发表文章和专利概览综述[J]. 储能科学与技术, 2017, 6(4):810-838. WANG Shuo, ZHOU Ge, YU Xiqian, et al. Overview of research papers and patents on energy storage technologies[J]. Energy Storage Science and Technology, 2017, 6(4):810-838.
[3] CHEN H, CONG T N, YANG W, et al. Progress in electrical energy storage system:A critical review[J]. Progress in Natural Science, National Natural Science Foundation of China and Chinese Academy of Sciences, 2009, 19(3):291-312.
[4] FOSSATI J P, GALARZA A, MARTIN-VILLATE A, et al. A method for optimal sizing energy storage systems for microgrids[J]. Renewable Energy, 2015, 77:539-549.
[5] TAN X, LI Q, WANG H. Advances and trends of energy storage technology in microgrid[J]. International Journal of Electrical Power and Energy Systems, 2013, 44(1):179-191.
[6] CNESA Research Department. CNESA global energy storage market analysis[R]. Beijing:China Energy Storage Alliance, 2018.
[7] Investment and Research. The global compressed air energy storage market report 2018:4454541[R]. Dublin:Investment and Research, 2018.
[8] 俞恩科, 陈梁金. 大规模电力储能技术的特性与比较[J]. 浙江电力, 2011, 30(12):4-8. YU Enke, CHEN Liangjin. Characteristics and comparison of large-scale power energy storage technologies[J]. Zhejiang Electric Power, 2011, 30(12):4-8.
[9] 方彤, 王乾坤, 周原冰. 电池储能技术在电力系统中的应用评价及发展建议[J]. 能源技术经济, 2011, 23(11):32-36. FANG Tong, WANG Qiankun, ZHOU Yuanbing. Evaluation of the application of battery energy storage technologies in power system and development suggestions[J]. Energy Technology Economy, 2011, 23(11):32-36.
[10] REDDY T B, LINDEN D. Linden's handbook of batteries[M]. New York:McGraw-Hill, 2011.
[11] Elsevier Science (FIRM). Energy conversion and management[M]. Oxford:Pergamon, 2005.
[12] 王承民, 孙伟卿, 衣涛, 等. 智能电网中储能技术应用规划及其效益评估方法综述[J]. 中国电机工程学报, 2013, 33(7):33-41. WANG Chengmin, SUN Weiqing, YI Tao, et al. Review on energy storage application planning and benefit evaluation methods in smart grid[J]. China Journal of Electrical Engineering. 2013, 33(7):33-41.
[13] WALAWALKAR R, APT J, MANCINI R. Economics of electric energy storage for energy arbitrage and regulation in New York[J]. Energy Policy, 2007, 35(4):2558-2568.
[14] STEWARD D, SAUR G, PENEV M, et al. Lifecycle cost analysis of hydrogen versus other technologies for electrical energy storage:H278.3400[R]. Washington DC:National Renewable Energy Laboratory, 2009.
[15] MALYSZ P, SIROUSPOUR S, EMADI A. An optimal energy storage control strategy for grid-connected microgrids[J]. IEEE Transactions on Smart Grid, 2014, 5(4):1785-1796.
[16] KRAJACIC G, DUCI N, ZMIJAREVIC Z, et al. Planning for a 100% independent energy system based on smart energy storage for integration of renewables and CO2emissions reduction[J]. Applied Thermal Engineering, 2011, 31(13):2073-2083.
[17] ZAKERI B, SYRI S. Electrical energy storage systems:A comparative life cycle cost analysis[J]. Renewable and Sustainable Energy Reviews, 2015, 42:569-596.
[18] SCHOENUNG S M, HASSENZAHL W V. Long-vs. short-term energy storage technologies analysis a life-cycle cost study:A study for the DOE energy storage systems program:2003-2783[R]. New Mexico:Sandia National Laboratories, 2003.
[19] POONPUN P, JEWELL W T. Analysis of the cost per Kilowatt Hour to store electricity[J]. IEEE Transactions On Energy Conversion, 2008, 23(2):529-534.
[20] BREALEY R A, MYERS S C, ALLEN F. Principles of corporate finance[M]. New York:McGraw-Hill, 2012.
[21] DENHOLM P, KULCINSKI G L. Life cycle energy requirements and greenhouse gas emissions from large scale energy storage systems[J]. Energy Conversion and Management, Pergamon, 2004, 45(13/14):2153-2172.
[22] RYDH C J. Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage[J]. Power Sources, 1998, 80(1/2):21-29.
[23] 王萌. 压缩空气储能系统建模与全生命周期3E分析与比较研究[D]. 北京:华北电力大学, 2013. WANG Meng. Compressed air energy storage system modeling and research on life cycle 3E analysis and comparison[D]. Beijing:North China Electric Power University, 2013.
[24] 杜晨, 陶维青, 孙雯. 微网中储能技术比较及应用[J]. 电源技术, 2013, 37(4):703-706. DU Chen, TAO Weiqing, SUN Wen. Discussion on energy storage technologies in microgrids and its application[J]. Chinese Journal of Power Source, 2013, 37(4):703-706.
[25] BARNHART C J, BENSON S M. On the importance of reducing the energetic and material demands of electrical energy storage[J]. Energy & Environmental Science, 2013, 6(4):doi:10.1039/c3ee24040a.
[26] 刘芳. 中国能源隐含流的国际流向和规模分析[J]. 现代管理科学, 2018(4):54-57.
[27] LEONTIEF W. Input-output economics[M]. New York:Oxford University Press, 1966:134.
[28] HANNON B. The structure of ecosystems[J]. Journal of Theoretical Biology, 1973, 41(3):535-546.
[29] SULLIVAN J L, GAINES L. A review of battery life-cycle analysis:state of knowledge and critical needs ANL/ESD/10-7[R]. Argonne national laboratory technical report, 2010.
[30] RYDH C, SAND′EN B. Energy analysis of batteries in photovoltaic systems. Part Ⅱ:Energy return factors and overall battery efficiencies[J]. Energy Convers. Manage., 2005, 46:1957-1979.
[31] DENHOLM P, KULCINSKI. Life cycle energy requirements and greenhouse gas emissions from large scale energy storage systems[J]. Energy Convers. Manage., 2004, 45:2153-2172.
[32] REDDAYAY A. Energy flows:How green is my solar?[J]. Renew Magzine, 2016(135):34-38.
[33] SULLIVAN J L, Gaines L. A review of battery life-cycle analysis:State of knowledge and critical needs energy systems division:ANL/ESD/10-7[R]. Argonne:Argonne National Laboratory, 2010.
[34] GUENA T, LEBLANC P. How depth of discharge affects the cycle life of lithium-metal-polymer batteries[C]//Intelec 06-Twenty-Eighth International Telecommunications Energy Conference. New York:IEEE, 2006:1-8.
[35] CHALK S G, MILLER J F. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems[J]. Journal of Power Sources, 2006, 159(1):73-80.
[36] 吴贤章, 尚晓丽. 可再生能源发电及智能电网储能技术比较[J]. 储能科学与技术, 2013, 2(3):316-320. WU Xianzhang, SHANG Xiaoli. A review of electrical energy storage technologies for revewable power generation and smart grids[J]. Energy storage science and technology. 2013, 2(3):316-320.
[37] 中国电力智库. 2017年全国电力版图[EB/OL].[2018-1-30]. http://www.chinaden.cn/news_nr.asp?id=16054&Small_Class=3.
[38] 智研咨询. 2017-2022年中国储能行业市场深度调研及投资前景分析报告:R471773[R]. 北京:智研咨询集团, 2016. Intellectual Research. In-depth market research and investment analysis report of China's energy storage industry from 2017 to 2022:R471773[R]. Bejing:Intellectual Research Group, 2016.
[39] 徐博, 冯连勇, 胡燕, 等. 能源投入回报(EROI)研究进展探析[J]. 中国矿业, 2016, 25(2):42-52. XU Bo, FENG Lianyong, HU Yan, et al. Analysis of the develop-pment of energy investment return (EROI) research[J]. China Mining Magazine, 2016, 25(2):42-57.
[40] HALL C A S, LAMBERT J G, BALOGH S B. Erol of different fuels and the implications for society[J]. Energy Policy, 2014, 64:141-152.
[41] 刘世念, 苏伟, 魏增福. 化学储能技术在电力系统中的应用效果评价分析[J]. 可再生能源, 2013, 31(1):105-108. LIU Shinian, SU Wei, WEI Zengfu. Application effect evaluation of the chemical energy storage battery in electric power system[J]. Renewable Energy Resources, 2013, 3(1):11-14. |