[1] YILMAZ M, KREIN P T. Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces[J]. IEEE Transactions on Power Electronics, 2013, 28(12):5673-5689.
[2] ETEZADI-AMOLI M, CHOMA K, STEFANI J. Rapid-charge electricvehicle stations[J]. IEEE Transactions on Power Delivery, 2010, 25(3):1883-1887.
[3] NEUBAUER J, PESARAN A, BAE C, et al. Updating united states advanced battery consortium and department of energy battery technology targets for battery electric vehicles[J]. Journal of Power Sources, 2014, 271(271):614-621.
[4] SCHROEDER A, TRABER T. The economics of fast charging infrastructure for electric vehicles[J]. Energy Policy, 2012, 43(4):136-144.
[5] CONG T N. Progress in electrical energy storage system:A critical review[J]. Progress in Natural Science:Materials International, 2009, 19(3):291-312.
[6] BACCINO F, MARINELLI M, NØRGÅRD P, et al. Experimental testing procedures and dynamic model validation for vanadium redox flow battery storage system[J]. Journal of Power Sources, 2014, 254(15):277-286.
[7] NOTTEN P H L, OP HET VELD J H G, VAN BEEK J R G. Boostcharging Li-ion batteries:A challenging new charging concept[J]. Journal of Power Sources, 2005, 145(1):89-94.
[8] LIN P C, LIU Y H, LIU Y H, et al. A fully digital rapid charger for electric scooters[J]. Proceedings of 18th Symposium on Electrical Vehicles, Session D7A, 2001:1-13.
[9] LIU Y H, TENG J H, LIN Y C. Search for an optimal rapid charging pattern for lithium-ion batteries using ant colony system algorithm[J]. IEEE Transactions on Industrial Electronics, 2005, 52(5):1328-1336.
[10] CHUNG S K, ANDRIIKO A A, MON'KO A P, et al. On charge conditions for Li-ion and other secondary lithium batteries with solid intercalation electrodes[J]. Journal of Power Sources, 1999, 79(2):205-211.
[11] LI W J, YANG Q R, CHOU S L, et al. Cobalt phosphide as a new anode material for sodium storage[J]. Journal of Power Sources, 2015, 294:627-632.
[12] 曹楚南. 电化学阻抗谱导论[M]. 北京:科学出版社, 2002. CAO C N. Introduction to electrochemical impedance spectroscopy[M]. Beijing:Science Press, 2002.
[13] LUO S, TANG Z, LU J, et al. Temperature sensitivity to capacity of LiFePO4-based cathode materials and AC impedance analysis[J]. Rare Metal Materials & Engineering, 2007, 36(5):835-837.
[14] SRINIVASAN R, CARKHUFF B G, BUTLER M H, et al. Instantaneous measurement of the internal temperature in lithium-ion rechargeable cells[J]. Electrochimica Acta, 2011, 56(17):6198-6204.
[15] 庄全超, 徐守冬, 孙世刚. 锂离子电池的电化学阻抗谱分析[J]. 化学进展, 2010, 22(6):1044-1057. ZHUANG C Q, XU S D, SUN S G. Diagnosis of electrochemical impedance spectroscopy in lithium ion batteries[J]. Progress in Chemistry, 2010, 22(6):1044-1057.
[16] 电车资源CT技术详解三洋18650电池循环寿命衰降原因[EB/OL]. http://www.evpartner.com/news/4/detail-41092.html, 2018-12-05.
[17] PFRANG A, KERSYS A, KRISTON A, et al. Long-term cycling induced jelly roll deformation in commercial 18650 cells[J]. Journal of Power Sources, 2018, 392:168-175.
[18] HAN X, OUYANG M, LU L, et al. A comparative study of commercial lithium ion battery cycle life in electrical vehicle:Aging mechanism identification[J]. Journal of Power Sources, 2014, 251:38-54. |