1 |
AMINE K , TUKAMOTO H , YASUDA H , et al . Preparation and electrochemical investigation of LiMn2- x Me x O4 (Me: Ni, Fe, and x= 0.5, 1) cathode materials for secondary lithium batteries[J]. Journal of Power Sources, 1997, 68(2): 604-608.
|
2 |
ZHONG Q M , BONAKCLARPOUR A , ZHANG M J , et al . Synthesis and electrochemistry of LiNixMn2-xO4 [J]. Journal of the Electrochemical Society, 1997, 144: 205-213.
|
3 |
王昊, 贲留斌, 林明翔, 等 锂离子电池高电压正极材料LiNi 0.5 Mn 1.5O4 的研究进展[J]. 储能科学与技术, 2017, 6(5): 841-854.
|
|
WANG H , BEN L L, LIN M X , et al . Research progress on high voltage cathode material LiNi0.5Mn1.5O4 for lithium-ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 841-854.
|
4 |
DUNCAN H , DUGUAY D , ABU-LEBDEH Y , et al . Study of the LiMn1.5Ni0.5O4/electrolyte interface at room temperature and 60 °C[J]. Journal of the Electrochemical Society, 2011, 158(5): 537-545.
|
5 |
DUNCAN H , ABU-LEBDEH Y , DAVIDSON I J . Study of the cathode-electrolyte interface of LiMn1.5Ni0.5O4 synthesized by a sol-gel method for Li-ion batteries[J]. Journal of the Electrochemical Society, 2010, 157(4): 528-535.
|
6 |
ARREBOLA J C , CABALLERO A , HERNAN L , et al . Re-examining the effect of ZnO on nanosized 5 V LiNi0.5Mn1.5O4 spinel: An effective procedure for enhancing its rate capability at room and high temperatures[J]. Journal of Power Sources, 2010, 195(13): 4278-4284.
|
7 |
LUO X J , BEN L L . Effect of MgO and Ta2O5 co-coatings on electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode material[J]. Journal of Alloys and Compounds, 2019, 810: 151951.
|
8 |
KIM J H , PIECZONKA N P W , LI Z , et al . Understanding the capacity fading mechanism in LiNi0.5Mn1.5O4/graphite Li-ion batteries[J]. Electrochimica Acta, 2013, 90: 556-562.
|
9 |
PIECZONKA N P W , LIU Z , LU P , et al . Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries[J]. The Journal of Physical Chemistry C, 2013, 117(31): 15947-15957.
|
10 |
ASL N M, KIM J H , PIECZONKA N P W , et al . Multilayer electrolyte cell: A new tool for identifying electrochemical performances of high voltage cathode materials[J]. Electrochemistry Communications, 2013, 32: 1-4.
|
11 |
TALYOSEF Y , MARKOVSKY B , SALITRA G , et al . The study of LiNi0.5Mn1.5O4 5V cathodes for Li-ion batteries[J]. Journal of Power Sources, 2005, 146(1-2): 664-669.
|
12 |
AURBACH D , MARKOVSKY B , TALYOSSEF Y , et al . Studies of cycling behavior, ageing, and interfacial reactions of LiNi0.5Mn1.5O4 and carbon electrodes for lithium-ion 5-V cells[J]. Journal of Power Sources, 2006, 162(2): 780-789.
|
13 |
PATOUX S , DANIEL L , BOURBON C , et al . High voltage spinel oxides for Li-ion batteries: From the material research to the application[J]. Journal of Power Sources, 2009, 189(1): 344-352.
|
14 |
MANTHIRAM A , CHEMELEWSKI K , LEE E S . A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries[J]. Energy & Environmental Science, 2014, 7: 1339-1350.
|
15 |
XU K , ANGELL C A . Sulfone-based electrolytes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2002, 149(7): 920-926.
|
16 |
ABOUIMRANE A , BELHAROUAK I , AMINE K . Sulfone-based electrolytes for high-voltage Li-ion batteries[J]. Electrochemistry Communications, 2009, 11(5): 1073-1076.
|
17 |
DEMEAUX J , VITO E D , LEMORDANT D , et al . On the limited performances of sulfone electrolytes towards the LiNi0.4Mn1.6O4 spinel[J]. Physical Chemistry Chemical Physics, 2013, 15: 20900-20910.
|
18 |
XUE L , UENO K , LEE S Y, et al . Enhanced performance of sulfone-based electrolytes at lithium ion battery electrodes, including the LiNi0.5Mn1.5O4 high voltage cathode[J]. Journal of Power Sources, 2014, 262: 123-128.
|
19 |
ARMAND M , ENDRES F , MACFARLANE D R , et al . Ionic-liquid materials for the electrochemical challenges of the future[J]. Nature Materials, 2009, 8: 621-629.
|
20 |
MARKEVICH E , BARANCHUGOV V , AURBACH D . On the possibility of using ionic liquids as electrolyte solutions for rechargeable 5V Li ion batteries[J]. Electrochemistry Communications, 2006, 8(8): 1331-1334.
|
21 |
BAE S Y, SHIN W K , KIM D W . Protective organic additives for high voltage LiNi0.5Mn1.5O4 cathode materials[J]. Electrochimica Acta, 2014, 125: 497-502.
|
22 |
LEWANDOWSKI A , SWIDERSKA-mOCEK A . Lithium-metal potential in Li+ containing ionic liquids[J]. Journal of Applied Electrochemistry, 2010, 40: 515-524.
|
23 |
ZHANG Z , HU L , WU H , et al . Fluorinated electrolytes for 5V lithium-ion battery[J]. Energy & Environmental Science, 2013, 6: 1806-1810.
|
24 |
HU L , ZHANG Z , AMINE K . Fluorinated electrolytes for Li-ion battery: An FEC-based electrolyte for high voltage LiNi0.5Mn1.5O4/graphite couple[J]. Electrochemistry Communications, 2013, 35: 76-79.
|
25 |
ZHU Y R , YI T F . Recent progress in the electrolytes for improving the cycling stability of LiNi0.5Mn1.5O4 high-voltage cathode[J]. Ionics, 2016, 22: 1759-1774.
|
26 |
KIM J H , PIECZONKA N P W , YANG L . Challenges and approaches for high-voltage spinel lithium-ion batteries[J]. ChemPhysChem., 2014, 15: 1940-1954.
|
27 |
QIAO R M , WANG Y S , OLALDE-VELASCO P , et al . Direct evidence of gradient Mn(II) evolution at charged states in LiNi0.5Mn1.5O4 electrodes with capacity fading[J]. Journal of Power Sources, 2015, 273: 1120-1126.
|
28 |
LIN M X , BEN L B, SUN Y , et al . Insight into the atomic structure of high-voltage spinel LiNi0.5Mn1.5O4 cathode material in the first cycle[J]. Chemistry of Materials, 2015, 27(1): 292-303.
|
29 |
WANG H , BEN L B, YU H L , et al . Understanding the effects of surface reconstruction on the electrochemical cycling performance of the spinel LiNi0.5Mn1.5O4 cathode material at elevated temperatures[J]. Journal of Materials Chemistry A, 2017, 5: 822-834.
|
30 |
HE M , HU L , XUE Z , et al . Fluorinated electrolytes for 5V Li-ion chemistry: Probing voltage stability of electrolytes with electrochemical floating test[J]. Journal of The Electrochemical Society, 2015, 162(9): 1725-1729.
|
31 |
HU L , XUE Z , AMINE K , et al . Fluorinated electrolytes for 5V Li-ion chemistry: Synthesis and evaluation of an additive for high-voltage LiNi0.5Mn1.5O4/graphite cell[J]. Journal of The Electrochemical Society, 2014, 161(12): 1777-1781.
|
32 |
XIA L , XIA Y , WANG C , et al . 5 V-class electrolytes based on fluorinated solvents for Li-ion batteries with excellent cyclability[J]. ChemElectroChem, 2015, 2: 1707-1712.
|
33 |
KIM C K , KIM K , SHIN K , et al . Synergistic effect of partially fluorinated ether and fluoroethylene carbonate for high-voltage lithium-ion batteries with rapid chargeability and dischargeability[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 44161-44172.
|
34 |
ALVARADO J , SCHROEDE M A , ZHANG M , et al . A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries[J]. Materials Today, 2018, 21(4): 341-353.
|
35 |
XIA L , LEE S, JIANG Y , et al . Physicochemical and electrochemical properties of 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether as a co-solvent for high-voltage lithium-Ion electrolytes[J]. ChemElect-roChem, 2019, 6: 3747-3755.
|
36 |
LU D , XU G , HU Z , et al . Deciphering the interface of a high-voltage (5 V-Class) Li-ion battery containing additive-assisted sulfolane-based electrolyte[J]. Small Methods, 2019, 3(10), 1900546..
|
37 |
CAO X , HE X , WANG J , et al . High voltage LiNi0.5Mn1.5O4/Li4Ti5O12 lithium ion cells at elevated temperatures: Carbonate-versus ionic liquid-based electrolytes[J]. ACS Applied Materials & Interfaces, 2016, 8(39): 25971-25978.
|
38 |
XIA J , PETIBON R , XIAO A , et al . The effectiveness of electrolyte additives in fluorinated electrolytes for high voltage Li[Ni0.4Mn0.4Co0.2]O2/graphite pouch Li-ion cells[J]. Journal of Power Sources, 2016, 330: 175-185.
|
39 |
SU C C , HE M , REDFERN P C , et al . Oxidatively stable fluorinated sulfone electrolytes for high voltage high energy lithium-ion batteries[J]. Energy & Environmental Science, 2017, 10: 900-904.
|