储能科学与技术 ›› 2020, Vol. 9 ›› Issue (5): 1443-1453.doi: 10.19799/j.cnki.2095-4239.2020.0109

• 储能材料与器件 • 上一篇    下一篇

铌元素在锂离子电池中的应用

高鹏1(), 张珊1, 贲留斌2, 赵文武2, 刘中柱3, 朱永明1(), 黄学杰2   

  1. 1.哈尔滨工业大学(威海)应用化学系,山东 威海 264209
    2.中国科学院物理研究所,北京 100190
    3.中信微合金化技术中心,北京 100004
    4.巴西矿冶公司,巴西 圣保罗 04578-910
  • 收稿日期:2020-03-19 修回日期:2020-03-30 出版日期:2020-09-05 发布日期:2020-09-08
  • 通讯作者: 朱永明 E-mail:gaofei5075@sina.com;zymhit@hit.edu.cn
  • 作者简介:高鹏(1978—),男,讲师,研究方向为锂离子电池材料,E-mail:gaofei5075@sina.com
  • 基金资助:
    中信-CBMM铌科技发展基金项目(2019FWNB-30056);国家电网公司2018科技项目(52170218003)

Application of niobium in lithium ion batteries

Peng GAO1(), Shan ZHANG1, Liubin BEN2, Wenwu ZHAO2, Zhongzhu LIU3, Rogerio RIBAS, Yongming ZHU1(), Xuejie HUANG2   

  1. 1.Harbin Institute of Technology (Weihai), Weihai 264209, Shandong, China
    2.Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
    3.CITIC-CBMM Microalloying Center, Beijing 100004, China
    4.Companhia Brasileira de Metalurgia e Mineracao, Sao Paulo 04578-910, Brazil
  • Received:2020-03-19 Revised:2020-03-30 Online:2020-09-05 Published:2020-09-08
  • Contact: Yongming ZHU E-mail:gaofei5075@sina.com;zymhit@hit.edu.cn

摘要:

锂离子电池因其能量密度高、环境污染小等优点得到了广泛应用,但其仍然存在不容忽视的问题,电极材料结构劣化导致的电化学性能下降及热稳定性差等问题仍然比较严重,因此电极材料改性仍然是目前锂离子电池的研究重点。基于铌具有其自身独特的优势,将铌引入锂离子电池作为正极掺杂材料,可以提高电子导电性、提高稳定性、扩展Li+嵌入/脱出通道及降低阳离子混排程度;将铌引入锂离子电池作为负极活性材料,铌氧化物和铌基复合氧化物也表现出优异的电化学性能;在固态电解质中,铌既可以作为Li7La3Zr2O12的主要掺杂元素,也是Li5La3Nb2O12中的主要组成元素。本文通过对近期相关文献的梳理,对铌在锂离子电池领域中的应用进行了总结与分析,重点阐述了其掺杂作用机理及其在锂离子电池正极材料、负极材料和固态电解质中的应用。在锂离子电池正极材料中,介绍了Nb在一元材料、二元材料、三元材料以及聚阴离子材料中的研究与应用情况;在锂离子电池负极材料中,介绍了铌氧化物和铌基复合氧化物作为新型负极材料的研究与应用情况;在锂离子电池固态电解质中,介绍了铌的掺杂和应用情况。最后对Nb修饰电极材料的产业应用前景和可行性做了适当的分析。综合分析表明,铌在锂系列电池中的研究范围越来越广阔,应用不断深入,相信未来铌会在锂电池领域发挥更加重要的作用。

关键词: 铌, 锂离子电池, 改性, 正极材料, 负极材料, 固态电解质

Abstract:

Lithium-ion batteries (LIBs) are widely used due to their advantages of high energy density and low environmental pollution. However, there are still some problems that cannot be ignored, i.e., degradation of the electrochemical performance and poor thermal stability due to the deterioration of the structure of the electrode materials. Therefore, modification of the electrode materials is still a current research focus for LIBs. Based on the unique advantages of niobium (Nb), introducing Nb into LIBs as a positive doping material can increase the electronic conductivity, improve stability, expand the insertion/extraction channel of Li+, and reduce the degree of cation mixing. In addition, the introduction of Nb into LIBs as a negative active material, via Nb oxide or Nb-based composite oxides, also results in excellent electrochemical performance. In solid electrolytes, Nb is not only the main doping element of Li7La3Zr2O12 but also the main component element of Li5La3Nb2O12. This paper discusses the recent literature and summarizes and analyzes the application of Nb in LIBs, with an emphasis on the doping mechanism and associated applications in positive material, negative material, and solid electrolytes for LIBs. For positive LIB materials, the research status of Nb in unitary, binary, ternary, lithium-rich, and polyanionic materials is introduced. For negative materials, the research progress of Nb oxide and Nb-based oxide anode materials as new negative materials is highlighted. In solid LIB electrolytes, the doping and application of Nb are introduced. Finally, the industrial application prospects and feasibility of Nb-modified electrode materials are analyzed. A comprehensive analysis shows that the research scope of Nb in lithium battery series is increasingly extensive as are its applications. It is believed that Nb will play a more important role in the field of lithium batteries in the future.

Key words: niobium, lithium ion battery, modification, cathode material, anode material, solid electrolyte

中图分类号: