储能科学与技术 ›› 2020, Vol. 9 ›› Issue (5): 1443-1453.doi: 10.19799/j.cnki.2095-4239.2020.0109
高鹏1(), 张珊1, 贲留斌2, 赵文武2, 刘中柱3, 朱永明1(), 黄学杰2
收稿日期:
2020-03-19
修回日期:
2020-03-30
出版日期:
2020-09-05
发布日期:
2020-09-08
通讯作者:
朱永明
E-mail:gaofei5075@sina.com;zymhit@hit.edu.cn
作者简介:
高鹏(1978—),男,讲师,研究方向为锂离子电池材料,E-mail:基金资助:
Peng GAO1(), Shan ZHANG1, Liubin BEN2, Wenwu ZHAO2, Zhongzhu LIU3, Rogerio RIBAS, Yongming ZHU1(), Xuejie HUANG2
Received:
2020-03-19
Revised:
2020-03-30
Online:
2020-09-05
Published:
2020-09-08
Contact:
Yongming ZHU
E-mail:gaofei5075@sina.com;zymhit@hit.edu.cn
摘要:
锂离子电池因其能量密度高、环境污染小等优点得到了广泛应用,但其仍然存在不容忽视的问题,电极材料结构劣化导致的电化学性能下降及热稳定性差等问题仍然比较严重,因此电极材料改性仍然是目前锂离子电池的研究重点。基于铌具有其自身独特的优势,将铌引入锂离子电池作为正极掺杂材料,可以提高电子导电性、提高稳定性、扩展Li+嵌入/脱出通道及降低阳离子混排程度;将铌引入锂离子电池作为负极活性材料,铌氧化物和铌基复合氧化物也表现出优异的电化学性能;在固态电解质中,铌既可以作为Li7La3Zr2O12的主要掺杂元素,也是Li5La3Nb2O12中的主要组成元素。本文通过对近期相关文献的梳理,对铌在锂离子电池领域中的应用进行了总结与分析,重点阐述了其掺杂作用机理及其在锂离子电池正极材料、负极材料和固态电解质中的应用。在锂离子电池正极材料中,介绍了Nb在一元材料、二元材料、三元材料以及聚阴离子材料中的研究与应用情况;在锂离子电池负极材料中,介绍了铌氧化物和铌基复合氧化物作为新型负极材料的研究与应用情况;在锂离子电池固态电解质中,介绍了铌的掺杂和应用情况。最后对Nb修饰电极材料的产业应用前景和可行性做了适当的分析。综合分析表明,铌在锂系列电池中的研究范围越来越广阔,应用不断深入,相信未来铌会在锂电池领域发挥更加重要的作用。
中图分类号:
高鹏, 张珊, 贲留斌, 赵文武, 刘中柱, 朱永明, 黄学杰. 铌元素在锂离子电池中的应用[J]. 储能科学与技术, 2020, 9(5): 1443-1453.
Peng GAO, Shan ZHANG, Liubin BEN, Wenwu ZHAO, Zhongzhu LIU, Rogerio RIBAS, Yongming ZHU, Xuejie HUANG. Application of niobium in lithium ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1443-1453.
1 | LI Yameng, CHEN Wangao, GUO Yongliang, et al. Theoretical investigations of TiNbC Mxenes as anode materials for Li-ion batteries[J]. Journal of Alloys and Compounds, 2019, 778: 53-60. |
2 | MORALES-UGATE J E, BOLIMOWSKA E, ROUAULT H, et al. EIS and XPS investigation on SEI layer formation during first discharge on graphite electrode with a vinylene carbonate doped imidazolium based ionic liquid electrolyte[J]. Journal of Physical Chemistry C, 2018, 122: 18223-18230. |
3 | LI Chunliu, ZHANG Linchao, YANG Junfeng, et al. Nb-doped and Al2O3 + B2O3-coated granular secondary LiMn2O4 particles as cathode materials for lithium-ion batteries[J]. RSC Advances, 2019, 9(6): 3436-3442. |
4 | DO S J, SANTHOSHKUMAR P, KANG S H, et al. Al-doped Li[Ni0.78Co0.1Mn0.1Al0.02]O2 for high performance of lithium ion batteries[J]. Ceramics International, 2019, 45: 6972-6977. |
5 | LI Liansheng, ZHANG Zhen, FU Sihan, et al. F127-assisted synthesis of LiNi0.5Co0.2Mn0.3O1.99F0.01 as a high rate and long lifespan cathode material for lithium-ion batteries[J]. Applied Surface Science, 2019, 476: 1061-1071. |
6 | SONG Liubin, LI Xinyu, XIAO Zhongliang, et al. Effect of Zr doping and Li2O-2B2O3 layer on the structural electrochemical properties of LiNi0.5Co0.2Mn0.3O2 cathode material: Experiments and first-principle calculations[J]. Ionics, 2019, 25(5): 2017-2026. |
7 | LI Xingxing, PAN Yu, YI Hong, et al. Mott-schottky effect leads to alkyne semi-hydrogenation over Pd-nanocube@N-doped carbon[J]. ACS Catalysis, 2019, 9: 4632-4641. |
8 | CHEN Zhaoyong, GONG Xiaolong, ZHU Huali, et al. High performance and structural stability of K and Cl Co-doped LiNi0.5Co0.2Mn0.3O2 cathode materials in 4.6 voltage[J]. Frontiers in Chemistry, 2018, 6: doi: 10.3389/fchem.2018.00643. |
9 | LAWAGON C P, NISOLA G M, CUEVAS R A I, et al. LiNi0.33Co1/3Mn1/3O2/Ag for electrochemical lithium recovery from brine[J]. Chemical Engineering Journal, 2018, 348: 1000-1011. |
10 | WEIGEL T, SCHIPPER F, ERICKSON E M, et al. Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2 cathode materials doped by various cations[J]. ACS Energy Letters, 2019, 4: 508-516. |
11 | LIU Wen, LI Xifei, XIONG Dongbin, et al. Significantly improving cycling performance of cathodes in lithium ion batteries: The effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2[J]. Nano Energy, 2018, 44: 111-120. |
12 | SU Yantao, CUI Suihan, ZHUO Zengqing, et al. Enhancing the high-voltage cycling performance of LiNi0.5Mn0.3Co0.2O2 by retarding its interfacial reaction with an electrolyte by atomic-layer-deposited Al2O3[J]. ACS Applied Materials & Interfaces, 2015, 7: 25105-25112. |
13 | CHO W, KIM S M, SONG J H, et al. Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating[J]. Journal of Power Sources, 2015, 282: 45-50. |
14 | TAO Fen, YAN Xiaoxia, LIU Junji, et al. Effects of PVP-assisted Co3O4 coating on the electrochemical and storage properties of LiNi0.6Co0.2Mn0.2O2 at high cut-off voltage[J]. Electrochim Acta, 2016, 210: 548-556. |
15 | WU Feng, TIAN Jun, SU Yuefeng, et al. Lithium-active molybdenum trioxide coated LiNi0.5Co0.2Mn0.3O2 cathode material with enhanced electrochemical properties for lithium-ion batteries[J]. Journal of Power Sources, 2014, 269: 747-754. |
16 | YANG Zuguang, XIANG Wei, WU Zhenguo, et al. Effect of niobium doping on the structure and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries[J]. Ceramics International, 2017, 43(4): 3866-3872. |
17 | LIU Siyang, CHEN Xiang, ZHAO Jiayue, et al. Uncovering the role of Nb modification in improving the structure stability and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode charged at higher voltage of 4.5 V[J]. Journal of Power Sources, 2018, 374: 149-157. |
18 | YU Congjie, YANG Jing, PENG Yi, et al. 1D Nb-doped LiNi1/3Co1/3Mn1/3O2 nanostructures as excellent cathodes for Li-ion battery[J]. Electrochim Acta, 2019, 297: 258-266. |
19 | YI Tingfeng, XIE Ying, ZHU Yanrong, et al. High rate micron-sized niobium-doped LiMn1.5Ni0.5O4 as ultra high power positive-electrode material for lithium-ion batteries[J]. Journal of Power Sources, 2012, 211: 59-65. |
20 | ZHAO Long, DUAN He, ZHAO Yanming, et al. High capacity and stability of Nb-doped Li3VO4 as an anode material for lithium ion batteries[J]. Journal of Power Sources, 2018, 378: 618-627. |
21 | GU Haidong, LIU Tingrui, LIU Tingting, et al. Improving the electrochemical properties of Mn-rich Li1.20[Mn0.54Ni0.13Co0.13]O2 by Nb and F co-doping[J]. Solid State Ionics, 2019, 336: 129-138. |
22 | 周文彩, 李金洪, 姜晓谦. 磷酸铁锂制备工艺及研究进展[J]. 硅酸盐通报, 2010, 29(1): 133-137. |
ZHOU Wencai, LI Jinhong, JIANG Xiaoqian. Preparation technology and research progress of lithium iron phosphate[J]. Bulletin of the Chinese Ceramic Society, 2010, 29(1): 133-137. | |
23 | LEI Yike, AI Jinjin, YANG Shuai, et al. Nb-doping in LiNi0.8Co0.1Mn0.1O2 cathode material: Effect on the cycling stability and voltage decay at high rates[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97: 255-263. |
24 | WANG Liping, DENG Libo, LI Yongliang, et al. Nb5+ doped LiV3O8 nanorods with extraordinary rate performance and cycling stability as cathodes for lithium-ion batteries[J]. Electrochim Acta, 2018, 284: 366-375. |
25 | WU Kang, JIA Guofeng, SHANGGUAN Xuehui, et al. Improved high rate performance and cycle stability for LiNi0.8Co0.2O2 by doping of the high valence state ion Nb5+ into Li+ sites[J]. Journal of Alloy and Compounds, 2018, 765: 700-709. |
26 | WILCOX J, PATOUX S, DOEFF M. Structure and electrochemistry of LiNil/3Co1/3-yMyMnl/3O2 (M=Ti, Al, Fe) positive electrode materials[J]. Journal of the Electrochemical Society, 2009, 156(3): A192-A198. |
27 | KANEDA H. Improving the cycling performance and thermal stability of LiNi0.6Co0.2Mn0.2O2 cathode materials by Nb-doping and surface modification[J]. International Journal of Electrochemical Science, 2017, 12(6): 4640-4653. |
28 | MAKHONINA E V, MASLENNIKOVA L S, VOLKOV V V, et al. Li-rich and Ni-rich transition metal oxides: Coating and core-shell structures[J]. Applied Surface Science, 2019, 474: 25-33. |
29 | LIU Shuai, LIU Zepeng, SHEN Xi, et al. Surface doping to enhance structural integrity and performance of Li-rich layered oxide[J]. Advanced Energy Materials, 2018, 8(31): doi: 10.1002/adma.201802105. |
30 | HU Xia, GUO Huajun, PENG Wenjie, et al. Effects of Nb doping on the performance of 0.5LiMnO3·0.5LiNi1/3Co1/3Mn1/3O2 cathode material for lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2018, 822: 57-65. |
31 | YABUUCHI N, TAKEUCHI M, NAKAYAMA M, et al. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure[J]. Proceedings of the National Academy of Sciences, 2015, 112: 7650-7655. |
32 | WANG Rui, LI Xin, LIU Lei, et al. A disordered rock-salt Li-excess cathode material with high capacity and substantial oxygen redox activity: Li1.25Nb0.25Mn0.5O2[J]. Electrochemistry Communications, 2015, 60: 70-83. |
33 | XIA Yang, ZHANG Wenkui, HUANG Hui, et al. Synthesis and electrochemical properties of Nb-doped Li3V2(PO4)3/C cathode materials for lithium-ion batteries[J]. Materials Science and Engineering: B, 2011, 176: 633-639. |
34 | JOHNSON I D, BLAGOVIDOVA E, DINGWALL P A, et al. High power Nb-doped LiFePO4 Li-ion battery cathodes;pilot-scale synthesis and electrochemical properties[J]. Journal of Power Sources, 2016, 326: 476-481. |
35 | 高金龙. 锂离子电池负极材料TiNb2O7的制备及掺杂改性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
GAO Jinlong. Study on preparation and substitution modification of TiNb2O7 as anode material for lithium ion batteries[D]. Harbin: Harbin Institute of Technology, 2015. | |
36 | LIN Jiande, YUAN Yuan, SU Qiong, et al. Facile synthesis of Nb2O5/carbon nanocomposites as advanced anode materials for lithium-ion batteries[J]. Electrochim Acta, 2018, 292: 63-71. |
37 | SHI Chongfu, XIANG Kaixiong, ZHU Yirong, et al. Nb2O5 nanospheres/surface-modified graphene composites as superior anode materials in lithium ion batteries[J]. Ceramics International, 2017, 43: 6232-6238. |
38 | SHI Chongfu, XIANG Kaixiong, ZHU Yirong, et al. Preparation and electrochemical properties of nanocable-like Nb2O5 /surface-modified carbon nanotubes composites for anode materials in lithium ion batteries[J]. Electrochim Acta, 2017, 246: 1088-1096. |
39 | WEN Hao, LIU Zhifu, WANG Jiao, et al. Facile synthesis of Nb2O5 nanorod array films and their electrochemical properties[J]. Applied Surface Science, 2011, 257: 10084-10088. |
40 | CHEN Hongwen, ZHANG Haixin, WU Yuhao, et al. Nanostructured Nb2O5 cathode for high-performance lithium-ion battery with super-P and graphene compound conductive agents[J]. Journal of Electroanalytical Chemistry, 2018, 827: 112-119. |
41 | LU Huayu, XIANG Kaixiong, BAI Ningbo, et al. Urchin-shaped Nb2O5 microspheres synthesized by the facile hydrothermal method and their lithium storage performance[J]. Materials Letters, 2016, 167: 106-108. |
42 | ZHAO Guangyu, ZHANG Li, LI Changle, et al. A practical Li ion battery anode material with high gravimetric/volumetric capacities based on T-Nb2O5/graphite composite[J]. Chemical Engineering Journal, 2017, 328: 844-852. |
43 | LI Yan, SUN Chunwen, GOODENOUGH J B. Electrochemical lithium intercalation in monoclinic Nb12O29[J]. Chemistry of Materials, 2011, 23: 2292-2294. |
44 | LI Renjie, QIN Yi, LIU Xin, et al. Conductive Nb25O62 and Nb12O29 anode materials for use in high-performance lithium-ion storage[J]. Electrochim Acta, 2018, 266: 202-211. |
45 | 娄帅锋, 程新群, 马玉林, 等. 锂离子电池铌基氧化物负极材料[J]. 化学进展, 2015, 27: 297-309. |
LOU Shuaifeng, CHENG Xinqun, MA Yulin, et al. Nb-based oxide anode materials for lithium ion batteries[J]. Progress in Chemistry, 2015, 27: 297-309. | |
46 | KENT J G, IEUAN D S, MICHAEL A H, et al. Ionic and electronic conduction in TiNb2O7[J]. Journal of the American Chemical Society, 2019, 141: 16706-16725. |
47 | WANG Guanqin, WEN Zhongsheng, DU Lulu, et al. Hierarchical Ti-Nb oxide microspheres with synergic multiphase structure as ultra-long-life anode materials for lithium-ion batteries[J]. Journal of Power Sources, 2017, 367: 106-115. |
48 | GUO Bingkun. A long-life lithium-ion battery with a highly porous TiNb2O7 anode for large-scale electrical energy storage[J]. Energy & Environmental Science, 2014: 2220-2226. |
49 | YU Haoxiang, CHENG Xing, ZHU Haojie, et al. Deep insights into kinetics and structural evolution of nitrogen-doped carbon coated TiNb24O62 nanowires as high-performance lithium container[J]. Nano Energy, 2018, 54: 227-237. |
50 | KONG Xingang, ZHANG Jiarui, HUANG Jianfeng, et al. Microwave assisted hydrothermal synthesis of tin niobates nanosheets with high cycle stability as lithium-ion battery anodes[J]. Chinese Chemical Letters, 2019, 30: 771-774. |
51 | SARITHA D, PRALONG V, VARADARAJU U V, et al. Electrochemical Li insertion studies on WNb12O33—A shear ReO3 type structure[J]. Journal of Solid State Chemistry, 2010, 183: 988-993. |
52 | YAN Lei, SHU Jie, LI Chunxiao, et al. W3Nb14O44 nanowires: Ultrastable lithium storage anode materials for advanced rechargeable batteries[J]. Energy Storage Materials, 2019, 16: 535-544. |
53 | CHENG Xing, QIAN Shangshu, YU Haoxiang, et al. BaNb3.6O10 nanowires with superior electrochemical performance towards ultrafast and highly stable lithium storage[J]. Energy Storage Materials, 2019, 16: 400-410. |
54 | LI Yuhang, ZHENG Runtian, YU Haoxiang, et al. Fabrication of one-dimensional architecture Bi5Nb3O15 nanowires by electrospinning for lithium-ion batteries with enhanced electrochemical performance[J]. Electrochim Acta, 2019, 299: 894-901. |
55 | YANG Chao, YU Shu, LIN Chunfu, et al. Cr0.5Nb24.5O62 nanowires with high electronic conductivity for high-rate and long-life lithium-ion storage[J]. ACS Nano, 2017, 11: 4217-4224. |
56 | XU Henghui, SHU Jie, HU Xianluo, et al. Electrospun porous LiNb3O8 nanofibers with enhanced lithium-storage properties[J]. Journal of Materials Chemistry A, 2013, 1: doi: 10.1039/c3ta13386a. |
57 | QIAN Shangshu, YU Haoxiang, YAN Lei, et al. High-rate long-life pored nanoribbon VNb9O25 built by interconnected ultrafine nanoparticles as anode for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9: 30608-30616. |
58 | ZHU Haojie, CHENG Xing, YU Haoxiang, et al. K6Nb10.8O30 groove nanobelts as high performance lithium-ion battery anode towards long-life energy storage[J]. Nano Energy, 2018, 52: 192-202. |
59 | CHEN Ziwei, CHENG Xing, LONG Nengbing, et al. Lithium storage behaviors of KNb3O8 nanowires for rechargeable batteries[J]. Ceramics International, 2018, 44: 5699-5704. |
60 | YANG Chao, ZHANG Yelong, Fan LYU, et al. Porous ZrNb24O62 nanowires with pseudocapacitive behavior achieve high-performance lithium-ion storage[J]. Journal of Materials Chemistry A, 2017, 5: 22297-22304. |
61 | CHEN Ziwei, CHENG Xing, YU Haoxiang, et al. Lithium sodium and potassium storage behaviors of Pb3Nb4O13 nanowires for rechargeable batteries[J]. Ceramics International, 2018, 44: 17094-17101. |
62 | 吕晓娟, 吴亚楠, 孟繁丽, 等. 石榴石型无机固态锂离子电解质的研究进展[J]. 陶瓷学报, 2019, 20(2): 148-152. |
Xiaojuan LYU, WU Ya'nan, MENG Fanli, et al. Research progress of garnet-type inorganic solid lithium ion electrolytes[J]. Chinese Journal of Ceramics, 2019, 20(2): 148-152. | |
63 | HANC E, ZAJAC W, MOLENDA J. Synthesis procedure and effect of Nd, Ca and Nb doping on structure and electrical conductivity of Li7La3Zr2O12 garnets[J]. Solid State Ionics, 2014, 262: 617-621. |
64 | ZHAO Pengcheng, XIANG Yu, WEN Yuehua, et al. Garnet-like Li7-xLa3Zr2-xNbxO12 (x=0~0.7) solid state electrolytes enhanced by self-consolidation strategy[J]. Journal of the European Ceramic Society, 2018, 38: 5454-5462. |
65 | YU Ran, DU Qingxia, ZOU Bangkun, et al. Synthesis and characterization of perovskite-type (Li, Sr)(Zr, Nb)O3 quaternary solid electrolyte for all-solid-state batteries[J]. Journal of Power Sources, 2016, 306: 623-629. |
66 | 武青. 石榴石结构固体电解质Li5La3M2 |
O12(M=Nb、Bi)的低温合成和性能表征[D]. 长沙: 中南大学, 2013.WU Qing. Low temperature synthesis and performance characterization of garnet-type structure solid electrolyte Li5La3M2O12 | |
(M=Nb, Bi)[D]. Changsha: Central South University, 2013. | |
67 | ZHAO Pengcheng, XIANG Yu, XU Yan, et al. Dense garnet-like Li5La3Nb2O12 solid electrolyte prepared by self-consolidation method[J]. Journal of Power Sources, 2018, 388: 25-31. |
68 | SHAO Junming, LI Zhicheng, ZENG Yuan, et al. Li29Zr9Nb3O40 based Li-ionic conductors as a new system of solid-state electrolytes[J]. Journal of Alloys and Compounds, 2020, 816: doi: 10.1016/j.jallcom.2019.152517. |
69 | 曹飞, 杨卉芃, 张亮, 等. 全球钽铌矿产资源开发利用现状及趋势[J]. 矿产保护与利用, 2019, 39(5): 56-67. |
CAO Fei, YANG Huipeng, ZHANG Liang, et al. Current situation and trend analysis of global tantalum and niobium mineral resources[J]. Conservation and Utilization of Mineral Resources, 2019, 39(5): 56-67. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 姚祯, 张琦, 王锐, 刘庆华, 王保国, 缪平. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(7): 2083-2091. |
[3] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[4] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[5] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[6] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[7] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[8] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[9] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[10] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[11] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[12] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[13] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[14] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[15] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||