储能科学与技术 ›› 2021, Vol. 10 ›› Issue (1): 385-392.doi: 10.19799/j.cnki.2095-4239.2020.0258

• 储能系统与工程 • 上一篇    

蓄热技术对可再生能源分布式能源系统的效益分析

曹建军1(), 王俊1, 张利勇1, 刘亚奇2,3, 凌浩恕2,3(), 王亮2,3, 徐玉杰2,3, 周学志4, 陈海生2,4   

  1. 1.神华国华(北京)分布式能源科技有限责任公司,北京 100025
    2.中国科学院工程热物理研究所,北京 100190
    3.中科储能(北京)咨询有限公司,北京 100190
    4.国家能源大规模物理储能技术(毕节)研发中心,贵州 毕节 551712
  • 收稿日期:2020-08-11 修回日期:2020-08-26 出版日期:2021-01-05 发布日期:2021-01-08
  • 作者简介:曹建军(1970—),男,高级工程师,从事发电厂生产管理、基建项目、清洁发电、分布式能源、综合能源、智慧运营等管理和研究工作,E-mail:jianjun.cao.f@chnenergy.com.cn|凌浩恕,博士,高级工程师,研究方向为蓄冷蓄热技术、大规模物理储能技术,E-mail:linghaoshu@iet.cn
  • 基金资助:
    国家重点研发计划(Y71O066151);贵州省科技计划项目(黔科合基础[2017]1163号);贵州省高新技术产业发展专项资金(贵州省大规模物理储能工程研究中心)(黔发改高技[2017]951号);贵州省科技厅科研机构创新能力建设专项资金(贵州省大规模物理储能技术研发平台能力建设)(黔科合服企[2019]4011);分布式冷热电联供系统北京市重点实验室,国华电力公司科技创新项目

Benefit analysis of heat storage technology applied to distributed energy system with renewable energy

Jianjun CAO1(), Jun WANG1, Liyong ZHANG1, Yaqi LIU2,3, Haoshu LING2,3(), Liang WANG2,3, Yujie XU2,3, Xuezhi ZHOU4, Haisheng CHEN2,4   

  1. 1.Shenhua Guohua(Beijing) Distributed Energy Technology Co. Ltd. , Beijing 100025, China
    2.Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    3.Zhongke Energy Storage (Beijing) Consulting Co. Ltd. , Beijing 100190, China
    4.National Energy Large Scale Physical Energy Storage Technologies Research and Development Center(Bijie), Bijie 551712, Guizhou, China
  • Received:2020-08-11 Revised:2020-08-26 Online:2021-01-05 Published:2021-01-08

摘要:

为了综合分析蓄热技术对可再生能源分布式能源系统的效益,本工作以大连某办公建筑群太阳能、风能、燃气互补的可再生能源分布式系统为研究对象,建立了蓄热技术与可再生能源分布式能源系统耦合评价模型,分析了蓄热技术对可再生能源分布式能源系统的电平衡、热平衡、燃料耗量及对环境温室效应、酸化效应和污染效应的影响,并利用静态经济性和动态经济性评价法,分析了水、导热油、耐火砖、水合盐、石蜡等蓄热技术应用的经济可行性。结果表明,在以电定热运行模式下,蓄热技术的引入对电平衡没有影响,但蓄热技术典型日可供暖14261.14 kW·h,减小63.95%燃气锅炉补热量,节约1822.74 m3燃气耗量,一次能源节约率为13.16%,进而减轻372165.90 g CO2造成的温室效应、278.30 g SO2造成的酸化效应和150.74 g PM2.5造成的污染效应;水、耐火砖、水合盐和石蜡蓄热技术具有较好的经济可行性,且以水蓄热技术最具优势,静态和动态投资回收期分别为4.91年和6.57年;导热油蓄热技术投资回收期较长,经济可行性较低。研究可为蓄热技术在分布式能源系统高效应用提供参考和依据。

关键词: 蓄热技术, 分布式能源, 可再生能源, 节能, 环保, 经济性

Abstract:

To determine the benefits of heat storage technologies applied to distributed energy systems with renewable energy, a distributed system in Dalian utilizing solar energy, wind energy, and gas was studied. An evaluation model was established, and the effects of heat storage on the electrical balance, thermal balance, fuel consumption, greenhouse effect, acidification, and pollution of the distributed energy system were analyzed. The economic feasibility of sensible heat storage applications in water, heat transfer oils, refractory bricks, and phase change heat storage technologies such as hydrated salts and paraffin, was determined using static and dynamic economic evaluation methods. The calculations indicate that heat storage technologies have no effect on the electricity balance of the distributed energy system, but could do the following: supply heating of 14261.14 kW·h on a typical day, reduce the heat generated with gas by 63.95%, reduce 1822.74 m3 of gas consumption, save 13.16% of primary energy, reduce the greenhouse effect caused by 372165.90 g of CO2, decrease acidification caused by 278.30 g of SO2, and lower pollution caused by 150.74 g of PM2.5 particulates. Heat storage technologies utilizing water, refractory brick, hydrated salts, and paraffins have high economic feasibility. Water is especially practical, with a static investment recovery period of 4.91 years and a dynamic investment recovery period of 6.57 years. The investment recovery periods of heat storage technologies using oil for heat transfer are relatively long, resulting in poor economic feasibility. In summary, this study provides a reference and a basis for the efficient application of heat storage technologies in distributed energy systems.

Key words: heat storage system, distributed energy system, renewable energy, energy saving, environmental protection, economy

中图分类号: