1 |
LIU J, ZHANG J G, YANG Z G, et al. Materials science and materials chemistry for large scale electrochemical energy storage: From transportation to electrical grid[J]. Advanced Functional Materials, 2013, 23(8): 929-946.
|
2 |
LI L Y, KIM S, WANG W, et al. A stable vanadium redox-flow battery with high energy density for large-scale energy storage[J]. Advanced Energy Materials, 2011, 1(3): 394-400.
|
3 |
付甜甜. 美国伯克利实验室携手通用公司(GE)共同探索电动汽车储能新方案[J]. 电源技术, 2014, 38(2): 197-198.
|
4 |
刘素琴, 黄可龙, 刘又年, 等. 储能钒液流电池研发热点及前景[J]. 电池, 2005, 35(5): 356-359.
|
|
LIU S Q, HUANG K L, LIU Y N, et al. The development and research progress in a energy storage unit—the vanadium redox flow battery[J]. Battery Bimonthly, 2005, 35(5): 356-359.
|
5 |
张华民, 王晓丽. 全钒液流电池技术最新研究进展[J]. 储能科学与技术, 2013, 2(3): 281-288.
|
|
ZHANG H M, WANG X L. Recent progress on vanadium flow battery technologies[J]. Energy Storage Science and Technology, 2013, 2(3): 281-288.
|
6 |
XU Y, WEN Y H, CHENG J, et al. A study of tiron in aqueous solutions for redox flow battery application[J]. Electrochimica Acta, 2010, 55(3): 715-720.
|
7 |
LEUNG P, LI X H, PONCE DE LEÓN C, et al. Progress in redox flow batteries, remaining challenges and their applications in energy storage[J]. RSC Advances, 2012, 2(27): 10125-10156.
|
8 |
BEH E S, DE PORCELLINIS D, GRACIA R L, et al. A neutral pH aqueous organic-organometallic redox flow battery with extremely high capacity retention[J]. ACS Energy Letters, 2017, 2(3): 639-644.
|
9 |
WEDEGE K, BAE D, DRAŽEVIĆ E, et al. Unbiased, complete solar charging of a neutral flow battery by a single Si photocathode[J]. RSC Advances, 2018, 8(12): 6331-6340.
|
10 |
SEVOV C S, HICKEY D P, COOK M E, et al. Physical organic approach to persistent, cyclable, low-potential electrolytes for flow battery applications[J]. Journal of the American Chemical Society, 2017, 139(8): 2924-2927.
|
11 |
CHEN H N, CONG G T, LU Y C. Recent progress in organic redox flow batteries: Active materials, electrolytes and membranes[J]. Journal of Energy Chemistry, 2018, 27(5): 1304-1325.
|
12 |
ZHANG J, JIANG G P, XU P, et al. An all-aqueous redox flow battery with unprecedented energy density[J]. Energy & Environmental Science, 2018, 11(8): 2010-2015.
|
13 |
LIN K X, GÓMEZ-BOMBARELLI R, BEH E S, et al. A redox-flow battery with an alloxazine-based organic electrolyte[J]. Nature Energy, 2016, 1: 16102.
|
14 |
ODOM S. Preventing crossover in redox flow batteries through active material oligomerization[J]. ACS Central Science, 2018, 4(2): 140-141.
|
15 |
BRUSHETT F R, AZIZ M J, RODBY K E. On lifetime and cost of redox-active organics for aqueous flow batteries[J]. ACS Energy Letters, 2020, 5(3): 879-884.
|
16 |
DE LA CRUZ C, MOLINA A, PATIL N, et al. New insights into phenazine-based organic redox flow batteries by using high-throughput DFT modelling[J]. Sustainable Energy & Fuels, 2020, 4(11): 5513-5521.
|
17 |
HU B, LUO J, HU M W, et al. A pH-neutral, metal-free aqueous organic redox flow battery employing an ammonium anthraquinone anolyte[J]. Angewandte Chemie, 2019, 131(46): 16782-16789.
|
18 |
ZHOU W B, LIU W J, QIN M, et al. Fundamental properties of TEMPO-based catholytes for aqueous redox flow batteries: Effects of substituent groups and electrolytes on electrochemical properties, solubilities and battery performance[J]. RSC Advances, 2020, 10(37): 21839-21844.
|
19 |
HU Y D, YAN L M, YUE B H. Sulfonation mechanism of polysulfone in concentrated sulfuric acid for proton exchange membrane fuel cell applications[J]. ACS Omega, 2020, 5(22): 13219-13223.
|
20 |
WANG C X, YANG Z, WANG Y R, et al. High-performance alkaline organic redox flow batteries based on 2-hydroxy-3-carboxy-1, 4-naphthoquinone[J]. ACS Energy Letters, 2018, 3(10): 2404-2409.
|
21 |
ZHOU L J, ZHU J Y, LIN M J, et al. Tetra-alkylsulfonate functionalized poly(aryl ether) membranes with nanosized hydrophilic channels for efficient proton conduction[J]. Journal of Energy Chemistry, 2020, 40: 57-64.
|
22 |
ZHANG C, NIU Z, PENG S, et al. Phenothiazine-based organic catholyte for high-capacity and long-life aqueous redox flow batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2019, 31(24): doi: 10. 1002/adma. 201901052.
|
23 |
AZIZ M A, HOSSAIN S I, SHANMUGAM S. Hierarchical oxygen rich-carbon nanorods: Efficient and durable electrode for all-vanadium redox flow batteries[J]. Journal of Power Sources, 2020, 445: doi: 10.1016/j.jpowsour. 2019. 227329.
|
24 |
KIM D K, YOON S J, KIM S. Transport phenomena associated with capacity loss of all-vanadium redox flow battery[J]. International Journal of Heat and Mass Transfer, 2020, 148: doi: 10. 1016/j.ijheatmasstransfer. 2019. 119040.
|
25 |
YANG B, MURALI A, NIRMALCHANDAR A, et al. A durable, inexpensive and scalable redox flow battery based on iron sulfate and anthraquinone disulfonic acid[J]. Journal of the Electrochemical Society, 2020, 167(6): doi: 10. 1149/1945-7111/ab84f8.
|
26 |
KWABI D G, LIN K X, JI Y L, et al. Alkaline quinone flow battery with long lifetime at pH 12[J]. Joule, 2018, 2(9): 1894-1906.
|