1 |
容晓晖, 陆雅翔, 戚兴国, 等. 钠离子电池:从基础研究到工程化探索[J]. 储能科学与技术, 2020, 9(2): 515-522.
|
|
RONG X H, LU Y X, QI X G, et al. Na-ion batteries: From fundamental research to engineering exploration[J]. Energy Storage Science and Technology, 2020, 9(2): 515-522.
|
2 |
LIU T F, ZHANG Y P, JIANG Z G, et al. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage[J]. Energy & Environmental Science, 2019, 12(5): 1512-1533.
|
3 |
ZHAO C, WANG Q, YAO Z, et al. Rational design of layered oxide materials for sodium-ion batteries[J]. Science, 2020, 370(6517): 708-711.
|
4 |
SENTHILKUMAR S T, ABIRAMI M, KIM J, et al. Sodium-ion hybrid electrolyte battery for sustainable energy storage applications[J]. Journal of Power Sources, 2017, 341: 404-410.
|
5 |
CHE Haiying, YANG Xinrong, Yu Yan, et al. Engineering optimization approach of nonaqueous electrolyte for sodium ion battery with long cycle life and safety[J].Green Energy& Environment, 2021(6): 212-219.
|
6 |
车海英, 喻妍, 杨馨蓉, 等. 基于多氟代醚和碳酸酯共溶剂的钠离子电池电解液特性[J]. 储能科学与技术, 2020, 9(2): 392-399.
|
|
CHE Haiying, YU Yan, YANG Xinrong, et al. Behavior of sodium-ion battery electrolytes based on the co-solvents of polyfluorinated ether and organic carbonates[J]. Energy Storage Science and Technology, 2020, 9(2): 392-399.
|
7 |
SINKARAM C, RAJAKUMAR K, ASIRVADAM V. Modeling battery management system using the lithium-ion battery[C]//2012 IEEE International Conference on Control System, Computing and Engineering, Penang, Malaysia, 2012: 50-55.
|
8 |
RAMADASS P, HARAN B L, GOMADAM P M, et al. Development of first principles capacity fade model for Li-ion cells[J]. Journal of the Electrochemical Society, 2004, 151(2): doi: 10.1149/1.6634273.
|
9 |
王其钰, 王朔, 周格, 等. 锂电池失效分析与研究进展[J]. 物理学报, 2018, 67(12): 279-290.
|
|
WANG Q Y, WANG S, ZHOU G, et al. Progress on the failure analysis of lithium battery[J]. Acta Physica Sinica, 2018, 67(12): 279-290.
|
10 |
ZHU Y, XU Y, LIU Y, et al. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries[J]. Nanoscale, 2013, 5(2): 780-787.
|
11 |
HEUBNER C, HEIDEN S, MATTHEY B, et al. Sodiation vs. lithiation of FePO4: A comparative kinetic study[J]. Electrochimica Acta, 2016, 216: 412-419.
|
12 |
ZHANG L J, MU Z Q, SUN C Y. Remaining useful life prediction for lithium-ion batteries based on exponential model and particle filter[J]. IEEE Access, 2018, 6: 17729-17740.
|
13 |
DUONG P L T, RAGHAVAN N. Heuristic Kalman optimized particle filter for remaining useful life prediction of lithium-ion battery[J]. Microelectronics Reliability, 2018, 81: 232-243.
|
14 |
MIAO Q, XIE L, CUI H J, et al. Remaining useful life prediction of lithium-ion battery with unscented particle filter technique[J]. Microelectronics Reliability, 2013, 53(6): 805-810.
|
15 |
HU X S, XU L, LIN X K, et al. Battery lifetime prognostics[J]. Joule, 2020, 4(2): 310-346.
|
16 |
NUHIC A, TERZIMEHIC T, SOCZKA-GUTH T, et al. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods[J]. Journal of Power Sources, 2013, 239: 680-688.
|
17 |
LIU D T, ZHOU J B, PAN D W, et al. Lithium-ion battery remaining useful life estimation with an optimized Relevance Vector Machine algorithm with incremental learning[J]. Measurement, 2015, 63: 143-151.
|
18 |
ZHANG Y Z, XIONG R, HE H W, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5695-5705.
|
19 |
GAO M Y, LIU Y Y, HE Z W. Battery state of charge online estimation based on particle filter[C]//2011 4th International Congress on Image and Signal Processing, Shanghai, China, 2011: 2233-2236.
|
20 |
POLA D A, NAVARRETE H F, ORCHARD M E, et al. Particle-filtering-based discharge time prognosis for lithium-ion batteries with a statistical characterization of use profiles[J]. IEEE Transactions on Reliability, 2015, 64(2): 710-720.
|
21 |
HU C, YOUN B D, CHUNG J. A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation[J]. Applied Energy, 2012, 92: 694-704.
|
22 |
PARTHIBAN T, RAVI R, KALAISELVI N. Exploration of artificial neural network [ANN] to predict the electrochemical characteristics of lithium-ion cells[J]. Electrochimica Acta, 2007, 53(4): 1877-1882.
|
23 |
PATTIPATI B, SANKAVARAM C, PATTIPATI K. System identification and estimation framework for pivotal automotive battery management system characteristics[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2011, 41(6): 869-884.
|
24 |
WANG S, ZHAO L L, SU X H, et al. Prognostics of lithium-ion batteries based on battery performance analysis and flexible support vector regression[J]. Energies, 2014, 7(10): 6492-6508.
|
25 |
LIU D T, PANG J Y, ZHOU J B, et al. Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression[J]. Microelectronics Reliability, 2013, 53(6): 832-839.
|
26 |
RICHARDSON R R, OSBORNE M A, HOWEY D A. Gaussian process regression for forecasting battery state of health[J]. Journal of Power Sources, 2017, 357: 209-219.
|
27 |
LI L, WANG P, CHAO K H, et al. Remaining useful life prediction for lithium-ion batteries based on Gaussian processes mixture[J]. PLoS One, 2016, 11(9): doi: 10.1371/journal.pone.0163004.
|
28 |
HE Y J, SHEN J N, SHEN J F, et al. State of health estimation of lithium-ion batteries: A multiscale Gaussian process regression modeling approach[J]. AIChE Journal, 2015, 61(5): 1589-1600.
|
29 |
韦海燕, 安晶晶, 陈静, 等. 基于改进粒子滤波算法实现锂离子电池RUL预测[J]. 汽车工程, 2019, 41(12): 1377-1383.
|
|
WEI H Y, AN J J, CHEN J, et al. RUL prediction of lithium-ion battery based on improved particle filtering algorithm[J]. Automotive Engineering, 2019, 41(12): 1377-1383.
|
30 |
SORENSON H W, ALSPACH D L. Recursive Bayesian estimation using Gaussian sums[J]. Automatica, 1971, 7(4): 465-479.
|
31 |
MALLAT S. A wavelet tour of signal processing: An approximation tour[M]. Amsterdam: Elsevier, 1999: 376-433.
|
32 |
RASMUSSEN C E. Advanced lectures on machine learning: Gaussian processes in machine learning[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004: 63-71.
|
33 |
SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5): 383-391.
|
34 |
SAHA B, GOEBEL K. Battery data set[J]. NASA AMES Prognostics Data Repository, 2007.
|