1 |
CAMPI T, CRUCIANI S, MARADEI F, et al. Magnetic field mitigation by multicoil active shielding in electric vehicles equipped with wireless power charging system[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(4): 1398-1405.
|
2 |
FAN S, LIU J, WU Q, et al. Optimal coordination of virtual power plant with photovoltaics and electric vehicles: A temporally coupled distributed online algorithm[J]. Applied Energy, 2020, 277: 115583.
|
3 |
ZHANG L, FAN W T, WANG Z P, et al. Battery heating for lithium-ion batteries based on multi-stage alternative currents[J]. Journal of Energy Storage, 2020, 32: 101885.
|
4 |
张振宇, 汪光森, 聂世雄, 等. 脉冲大倍率放电条件下磷酸铁锂电池荷电状态估计[J]. 电工技术学报, 2019, 34(8): 1769-1779.
|
|
ZHANG Z Y, WANG G S, NIE S X, et al. State of charge estimation of LiFePO4 battery under the condition of high rate pulsed discharge[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1769-1779.
|
5 |
SUI X, HE S, VILSEN S B, et al. A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery[J]. Applied Energy, 2021, 300: 117346.
|
6 |
LIPU M S H, HANNAN M A, HUSSAIN A, et al. A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations[J]. Journal of Cleaner Production, 2018, 205: 115-133.
|
7 |
LIN C P, CABRERA J, YANG F F, et al. Battery state of health modeling and remaining useful life prediction through time series model[J]. Applied Energy, 2020, 275: 115338.
|
8 |
任璞, 王顺利, 何明芳, 等. 基于内阻增加和容量衰减双重标定的锂电池健康状态评估[J]. 储能科学与技术, 2021, 10(2): 738-743.
|
|
REN P, WANG S L, HE M F, et al. State of health estimation of Li-ion battery based on dual calibration of internal resistance increasing and capacity fading[J]. Energy Storage Science and Technology, 2021, 10(2): 738-743.
|
9 |
ZHANG C, ALLAFI W, DINH Q, et al. Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique[J]. Energy, 2018, 142: 678-688.
|
10 |
严干贵, 李洪波, 段双明, 等. 基于模型参数辨识的储能电池状态估算[J]. 中国电机工程学报, 2020, 40(24): 8145-8154, 8251.
|
|
YAN G G, LI H B, DUAN S M, et al. Energy storage battery state estimation based on model parameter identification[J]. Proceedings of the CSEE, 2020, 40(24): 8145-8154, 8251.
|
11 |
王英楷, 张红, 王星辉. 基于1DCNN-LSTM的锂离子电池SOH预测[J]. 储能科学与技术, 2022, 11(1): 240-245.
|
|
WANG Y K, ZHANG H, WANG X H. Hybrid 1DCNN-LSTM model for predicting lithium ion battery state of health[J]. Energy Storage Science and Technology, 2022, 11(1): 240-245.
|
12 |
徐超, 李立伟, 杨玉新, 等. 基于改进粒子滤波的锂电池SOH预测[J]. 储能科学与技术, 2020, 9(6): 1954-1960.
|
|
XU C, LI L W, YANG Y X, et al. Lithium-ion battery SOH estimation based on improved particle filter[J]. Energy Storage Science and Technology, 2020, 9(6): 1954-1960.
|
13 |
杨胜杰, 罗冰洋, 王菁, 等. 基于容量增量曲线峰值区间特征参数的锂离子电池健康状态估算[J]. 电工技术学报, 2021, 36(11): 2277-2287.
|
|
YANG S J, LUO B Y, WANG J, et al. State of health estimation for lithium-ion batteries based on peak region feature parameters of incremental capacity curve[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2277-2287.
|
14 |
National Aeronautics and Space Administration Prognostics Center of Excellence. PCoE Datasets[EB/OL]. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#battery.
|
15 |
YANG J F, XIA B, HUANG W X, et al. Online state-of-health estimation for lithium-ion batteries using constant-voltage charging current analysis[J]. Applied Energy, 2018, 212: 1589-1600.
|
16 |
WANG Z K, ZENG S K, GUO J B, et al. State of health estimation of lithium-ion batteries based on the constant voltage charging curve[J]. Energy, 2019, 167: 661-669.
|
17 |
YE Y H, SHI Y X, CAI N S, et al. Electro-thermal modeling and experimental validation for lithium ion battery[J]. Journal of Power Sources, 2012, 199: 227-238.
|
18 |
张小利, 李雄飞, 李军. 融合图像质量评价指标的相关性分析及性能评估[J]. 自动化学报, 2014, 40(2): 306-315.
|
|
ZHANG X L, LI X F, LI J. Validation and correlation analysis of metrics for evaluating performance of image fusion[J]. Acta Automatica Sinica, 2014, 40(2): 306-315.
|
19 |
殷浩然, 苗世洪, 韩佶, 等. 基于三维卷积神经网络的配电物联网异常辨识方法[J]. 电力系统自动化, 2022, 46(1): 42-50.
|
|
YIN H R, MIAO S H, HAN J, et al. Anomaly identification method for distribution Internet of Things based on three-dimensional convolutional neural network[J]. Automation of Electric Power Systems, 2022, 46(1): 42-50.
|
20 |
孙黎霞, 白景涛, 周照宇, 等. 基于双向长短期记忆网络的电力系统暂态稳定评估[J]. 电力系统自动化, 2020, 44(13): 64-72.
|
|
SUN L X, BAI J T, ZHOU Z Y, et al. Transient stability assessment of power system based on Bi-directional long-short-term memory network[J]. Automation of Electric Power Systems, 2020, 44(13): 64-72.
|
21 |
孟安波, 陈顺, 王陈恩, 等. 基于混沌CSO优化时序注意力GRU模型的超短期风电功率预测[J]. 电网技术, 2021, 45(12): 4692-4700.
|
|
MENG A B, CHEN S, WANG C N, et al. Ultra-short-term wind power prediction based on chaotic CSO optimized temporal attention GRU model[J]. Power System Technology, 2021, 45(12): 4692-4700.
|
22 |
顾国庆, 李晓辉. 基于箱线图异常检测的指数加权平滑预测模型[J]. 计算机与现代化, 2021(1): 28-33.
|
|
GU G Q, LI X H. Exponential weighted smoothing prediction model based on abnormal detection of box-plot[J]. Computer and Modernization, 2021(1): 28-33.
|
23 |
REHMAN A U, BELHAOUARI S B, IJAZ M, et al. Multi-classifier tree with transient features for drift compensation in electronic nose[J]. IEEE Sensors Journal, 2020, 21(5): 6564-6574.
|
24 |
王英楷, 张红, 王星辉. 基于1DCNN-LSTM的锂离子电池SOH预测[J]. 储能科学与技术, 2022, 11(1): 240-245.
|
|
WANG Y K, ZHANG H, WANG X H. Hybrid 1DCNN-LSTM model for predicting lithium ion battery state of health[J]. Energy Storage Science and Technology, 2022, 11(1): 240-245.
|
25 |
张吉昂, 王萍, 程泽. 基于充电电压片段和融合方法的锂离子电池SOC-SOH-RUL联合估计[J/OL]. 电网技术: 1-12[2021-10-31]. https://doi.org/10.13335/j.1000-3673.pst.2021.0888.
|
|
ZHANG Ji'ang, WANG Ping, CHENG Ze. A Joint estimation framework of SOC-SOH-RUL for lithium batteries based on charging voltage segment and hybrid method[J/OL]. Power System Technology1-12[2021-10-31]. https://doi.org/10.13335/j.1000-3673.pst.2021.0888.
|