1 |
吴学安. 新能源行走在绿色低碳转型的大道上[J]. 防灾博览, 2022(2): 12-17.
|
|
WU X A. New energy is walking on the road of green and low-carbon transformation[J]. Overview of Disaster Prevention, 2022(2): 12-17.
|
2 |
刘进亮. 氢能产业分析及发展对策[J]. 一重技术, 2022(1): 68-72.
|
|
LIU J L. Analysis and development strategy about hydrogen energy industry[J]. CFHI Technology, 2022(1): 68-72.
|
3 |
丁镠, 唐涛, 王耀萱, 等. 氢储运技术研究进展与发展趋势[J]. 天然气化工—C1化学与化工, 2022, 47(2): 35-40.
|
|
DING L, TANG T, WANG Y X, et al. Research progress and development trend of hydrogen storage and transportation technology[J]. Natural Gas Chemical Industry, 2022, 47(2): 35-40.
|
4 |
ZHANG Q A, JIANG C J, LIU D D. Comparative investigations on the hydrogenation characteristics and hydrogen storage kinetics of melt-spun Mg10NiR(R=La, Nd and Sm) alloys[J]. International Journal of Hydrogen Energy, 2012, 37(14): 10709-10714.
|
5 |
SONG M Y, KWON S N, PARK H R, et al. Improvement in the hydrogen storage properties of Mg by mechanical grinding with Ni, Fe and V under H2 atmosphere[J]. International Journal of Hydrogen Energy, 2011, 36(21): 13587-13594.
|
6 |
KALINICHENKA S, RÖNTZSCH L, RIEDL T, et al. Hydrogen storage properties and microstructure of melt-spun Mg90Ni8RE2 (RE=Y, Nd, Gd)[J]. International Journal of Hydrogen Energy, 2011, 36(17): 10808-10815.
|
7 |
ZHANG Y H, SHANG H W, LI Y Q, et al. Highly improved hydrogen storage capacity and kinetics of the nanocrystalline and amorphous PrMg12-type alloys by mechanical milling[J]. IOP Conference Series: Earth and Environmental Science, 2017, 52: 012004.
|
8 |
KALINICHENKA S, RÖNTZSCH L, RIEDL T, et al. Microstructure and hydrogen storage properties of melt-spun Mg-Cu-Ni-Y alloys[J]. International Journal of Hydrogen Energy, 2011, 36(2): 1592-1600.
|
9 |
SONG M Y, KWAK Y J, SHIN H S, et al. Improvement of hydrogen-storage properties of MgH2 by Ni, LiBH4, and Ti addition[J]. International Journal of Hydrogen Energy, 2013, 38(4): 1910-1917.
|
10 |
ZHANG Y H, LI X F, HOU Z H, et al. Highly ameliorated gaseous and electrochemical hydrogen storage kinetics of nanocrystalline and amorphous CeMg12-type alloys by mechanical milling[J]. Solid State Sciences, 2019, 90: 41-48.
|
11 |
HOU Z H, YUAN Z M, FENG D C, et al. Electrochemical hydrogen storage performance of the nanocrystalline and amorphous Pr-Mg-Ni-based alloys synthesized by mechanical milling[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2021, 36(1): 116-126.
|
12 |
ZHANG Y H, LI L W, FENG D C, et al. Hydrogen storage behavior of nanocrystalline and amorphous La-Mg-Ni-based LaMg12-type alloys synthesized by mechanical milling[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(3): 551-561.
|
13 |
BU W G, ZHANG W, GAO J L, et al. Improved hydrogen storage kinetics of nanocrystalline and amorphous Pr-Mg-Ni-based PrMg12-type alloys synthesized by mechanical milling[J]. International Journal of Hydrogen Energy, 2017, 42(29): 18452-18464.
|
14 |
GAO J L, QI Y, LI Y Q, et al. Hydrogen storage thermodynamic and kinetic characteristics of PrMg12-type alloys synthesized by mechanical milling[J]. Journal of Iron and Steel Research, International, 2017, 24(2): 198-205.
|
15 |
POZZO M, ALFÈ D. Hydrogen dissociation and diffusion on transition metal(=Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001)surfaces[J]. International Journal of Hydrogen Energy, 2009, 34(4): 1922-1930.
|
16 |
XUE Y J, SUN S S, WANG Q, et al. Transition metal oxide-based oxygen reduction reaction electrocatalysts for energy conversion systems with aqueous electrolytes[J]. Journal of Materials Chemistry A, 2018, 6(23): 10595-10626.
|
17 |
GAO J Z, GUAN F, ZHAO Y C, et al. Preparation of ultrafine nickel powder and its catalytic dehydrogenation activity[J]. Materials Chemistry and Physics, 2001, 71(2): 215-219.
|
18 |
ABDELLAOUI M, MOKBLI S, CUEVAS F, et al. Structural and electrochemical properties of amorphous rich MgxNi100- x nanomaterial obtained by mechanical alloying[J]. Journal of Alloys and Compounds, 2003, 356/357: 557-561.
|
19 |
WANG Y, WANG X, LI C M. Electrochemical hydrogen storage of ball-milled MmMg12 alloy-Ni composites[J]. International Journal of Hydrogen Energy, 2010, 35(8): 3550-3554.
|
20 |
POLETAEV A A, DENYS R V, MAEHLEN J P, et al. Nanostructured rapidly solidified LaMg11Ni alloy: Microstructure, crystal structure and hydrogenation properties[J]. International Journal of Hydrogen Energy, 2012, 37(4): 3548-3557.
|
21 |
FALAHATI H, BARZ D P J. Evaluation of hydrogen sorption models for AB5-type metal alloys by employing a gravimetric technique[J]. International Journal of Hydrogen Energy, 2013, 38(21): 8838-8851.
|
22 |
YONG H, GUO S H, YUAN Z M, et al. Improved hydrogen storage kinetics and thermodynamics of RE-Mg-based alloy by co-doping Ce-Y[J]. International Journal of Hydrogen Energy, 2019, 44(31): 16765-16776.
|
23 |
SONG W J, LI J S, ZHANG T B, et al. Microstructure and tailoring hydrogenation performance of Y-doped Mg2Ni alloys[J]. Journal of Power Sources, 2014, 245: 808-815.
|
24 |
YUAN Z M, YANG T, BU W G, et al. Structure, hydrogen storage kinetics and thermodynamics of Mg-base Sm5Mg41 alloy[J]. International Journal of Hydrogen Energy, 2016, 41(14): 5994-6003.
|
25 |
CHO Y H, AMINORROAYA S, LIU H K, et al. The effect of transition metals on hydrogen migration and catalysis in cast Mg-Ni alloys[J]. International Journal of Hydrogen Energy, 2011, 36(8): 4984-4992.
|
26 |
YIM C D, YOU B S, NA Y S, et al. Hydriding properties of Mg-xNi alloys with different microstructures[J]. Catalysis Today, 2007, 120(3/4): 276-280.
|
27 |
傅小明. 材料制备技术与分析方法[M]. 南京: 南京大学出版社, 2020.
|
|
FU X M. Material Preparation Technology and Analysis Method [M]. Nanjing: Nanjing University Press, 2020.
|
28 |
LAIDLER K J. A glossary of terms used in chemical kinetics, including reaction dynamics (IUPAC Recommendations 1996)[J]. Pure and Applied Chemistry, 1996, 68(1): 149-192.
|
29 |
WEINBERG M C, BIRNIE D P III, SHNEIDMAN V A. Crystallization kinetics and the JMAK equation[J]. Journal of Non-Crystalline Solids, 1997, 219: 89-99.
|
30 |
FAN M Q, LIU S S, ZHANG Y, et al. Superior hydrogen storage properties of MgH2-10 wt.% TiC composite[J]. Energy, 2010, 35(8): 3417-3421.
|