1 |
范茂松, 金翼, 杨凯, 等. 退役LiFePO4电池性能测评及储能应用[J]. 储能科学与技术, 2019, 8(2): 408-414.
|
|
FAN M S, JIN Y, YANG K, et al. Testing of the performance and energy-storage applied for retired LiFePO4 batteries[J]. Energy Storage Science and Technology, 2019, 8(2): 408-414.
|
2 |
李肖辉, 陈北海, 古领先, 等. 锂离子电池健康状态评估方法研究进展[J]. 电源技术, 2021, 45(6): 818-822.
|
|
LI X H, CHEN B H, GU L X, et al. Research progress of health assessment methods for lithium ion batteries[J]. Chinese Journal of Power Sources, 2021, 45(6): 818-822.
|
3 |
吴盛军, 袁晓冬, 徐青山, 等. 锂电池健康状态评估综述[J]. 电源技术, 2017, 41(12): 1788-1791.WU S J, YUAN X D, XU Q S, et al. Review on lithium-ion battery health state assessment[J]. Chinese Journal of Power Sources, 2017, 41(12): 1788-1791
|
4 |
CUI Y Z, ZUO P J, DU C Y, et al. State of health diagnosis model for lithium ion batteries based on real-time impedance and open circuit voltage parameters identification method[J]. Energy, 2018, 144: 647-656.
|
5 |
刘鹏, 梁新成, 黄国钧. 锂离子电池模型综述[J]. 电池工业, 2021, 25(2): 106-112.
|
|
LIU P, LIANG X C, HUANG G J. A review of lithium-ion battery models[J]. Chinese Battery Industry, 2021, 25(2): 106-112.
|
6 |
YANG D, WANG Y J, PAN R, et al. State-of-health estimation for the lithium-ion battery based on support vector regression[J]. Applied Energy, 2018, 227: 273-283.
|
7 |
吴铁洲, 刘思哲, 张晓星, 等. 基于FA-BP神经网络的锂离子电池SOH估算[J]. 电池, 2021, 51(1): 21-25.
|
|
WU T Z, LIU S Z, ZHANG X X, et al. SOH estimation of Li-ion battery based on FA-BP neural network[J]. Battery Bimonthly, 2021, 51(1): 21-25.
|
8 |
KAUR K, GARG A, CUI X J, et al. Deep learning networks for capacity estimation for monitoring SOH of Li-ion batteries for electric vehicles[J]. International Journal of Energy Research, 2021, 45: 3113-3128.
|
9 |
WANG S L, FERNANDEZ C, YU C M, et al. A novel charged state prediction method of the lithium ion battery packs based on the composite equivalent modeling and improved splice Kalman filtering algorithm[J]. Journal of Power Sources, 2020, 471: 228450.
|
10 |
卢婷, 杨文强. 锂离子电池全生命周期内评估参数及评估方法综述[J]. 储能科学与技术, 2020, 9(3): 657-669.LU T, YANG W Q. Review of evaluation parameters and methods of lithium batteries throughout its life cycle[J]. Energy Storage Science and Technology, 2020, 9(3): 657-669
|
11 |
SAHAR K, DANIAL K, HAMIDREZA B, et al. Online health diagnosis of lithium-ion batteries based on nonlinear autoregressive neural network[J]. Applied Energy, 2021, 282: 116159.
|
12 |
ZHANG Q, WANG D F, YANG B W, et al. Electrochemical model of lithium-ion battery for wide frequency range applications[J]. Electrochimica Acta, 2020, 343: 136094
|
13 |
吴磊, 吕桃林, 陈启忠, 等. 电化学阻抗谱测量与应用研究综述[J]. 电源技术, 2021, 45(9): 1227-1230.
|
|
WU L, LÜ T L, CHEN Q Z, et al. Review of measurement and application of electrochemical impedance spectroscopy[J]. 2021, 45(9): 1227-1230.
|
14 |
范文杰, 徐广昊, 于泊宁, 等. 基于电化学阻抗谱的锂离子电池内部温度在线估计方法研究[J]. 中国电机工程学报, 2021, 41(9): 3283-3293.
|
|
FAN W J, XU G H, YU B N, et al. On-line estimation method for internal temperature of lithium-ion battery based on electrochemical impedance spectroscopy[J]. Proceedings of the CSEE, 2021, 41(9): 3283-3293.
|
15 |
马克·欧瑞姆, 伯纳德·特瑞博勒特. 电化学阻抗谱[M]. 雍兴跃, 张学元, 译. 北京: 化学工业出版社, 2014.ORAZEM M E, TRIBOLLET B. Electrochemical impedance spectroscopy[M]. YONG X Y, ZHANG X Y, Trans. Beijing: Chemical Industry Press, 2014.
|