1 |
刘英军, 刘亚奇, 张华良, 等. 我国储能政策分析与建议[J]. 储能科学与技术, 2021, 10(4): 1463-1473.
|
|
LIU Y J, LIU Y Q, ZHANG H L, et al. Energy storage policy analysis and suggestions in China[J]. Energy Storage Science and Technology, 2021, 10(4): 1463-1473.
|
2 |
ZHAO D P, DAI M Z, ZHAO Y, et al. Improving electrocatalytic activities of FeCo2O4@FeCo2S4@PPy electrodes by surface/interface regulation[J]. Nano Energy, 2020, 72: doi: 10.1016/j.nanoen.2020.104715.
|
3 |
TONG Y L, LIU H Q, DAI M Z, et al. Metal-organic framework derived Co3O4/PPy bifunctional electrocatalysts for efficient overall water splitting[J]. Chinese Chemical Letters, 2020, 31(9): 2295-2299.
|
4 |
LIU Y, WU X. Review of vanadium-based electrode materials for rechargeable aqueous zinc ion batteries[J]. Journal of Energy Chemistry, 2021, 56: 223-237.
|
5 |
LIU H Q, ZHAO D P, HU P F, et al. Design strategies toward achieving high-performance CoMoO4@Co1.62Mo6S8 electrode materials[J]. Materials Today Physics, 2020, 13: doi: 10.1016/j.mtphys.2020.100197.
|
6 |
KITAO T, ZHANG Y Y, KITAGAWA S, et al. Hybridization of MOFs and polymers[J]. Chemical Society Reviews, 2017, 46(11): 3108-3133.
|
7 |
LIAN X Z, FANG Y, JOSEPH E, et al. Enzyme-MOF (metal-organic framework) composites[J]. Chemical Society Reviews, 2017, 46(11): 3386-3401.
|
8 |
LIU C, WU X, WANG B. Performance modulation of energy storage devices: A case of Ni-Co-S electrode materials[J]. Chemical Engineering Journal, 2020, 392: doi: 10.1016/j.cej.2019.123651.
|
9 |
ZHAO Y, HE J F, DAI M Z, et al. Emerging CoMn-LDH@MnO2 electrode materials assembled using nanosheets for flexible and foldable energy storage devices[J]. Journal of Energy Chemistry, 2020, 45: 67-73.
|
10 |
YANG X, WANG Y, HU Y Y, et al. Interior supported hierarchical TiO2@Co3O4 derived from MOF-on-MOF architecture with enhanced electrochemical properties for lithium storage[J]. ChemElectroChem, 2019, 6(14): 3657-3666.
|
11 |
郭德超, 郭义敏, 张啟文, 等. 锂离子电池用无溶剂干法电极的制备及其性能研究[J]. 储能科学与技术, 2021, 10(4): 1311-1316.
|
|
GUO D C, GUO Y M, ZHANG Q W, et al. Preparation and characterization of solvent-free dry electrodes for lithium ion batteries[J]. Energy Storage Science and Technology, 2021, 10(4): 1311-1316.
|
12 |
WU C D, ZHAO M. Incorporation of molecular catalysts in metal-organic frameworks for highly efficient heterogeneous catalysis[J]. Advanced Materials, 2017, 29(14): doi: 10.1002/adma.201605446.
|
13 |
凤睿, 卢海, 刘心毅, 等. 正负极质量非对称设计对超级电容器性能的影响研究[J]. 储能科学与技术, 2021, 10(2): 491-496.
|
|
FENG R, LU H, LIU X Y, et al. Study on effect of an asymmetric design of the mass on the cathode and anode on supercapacitor performance[J]. Energy Storage Science and Technology, 2021, 10(2): 491-496.
|
14 |
韩翔宇, 王亮, 葛志伟, 等. Co3O4/CoO氧化还原反应储/释热动力学特性[J]. 储能科学与技术, 2021, 10(5): 1701-1708.
|
|
HAN X Y, WANG L, GE Z W, et al. The thermal storage and release kinetics of Co3O4/CoO redox reaction[J]. Energy Storage Science and Technology, 2021, 10(5): 1701-1708.
|
15 |
LIU H Q, ZHAO D P, LIU Y, et al. NiMoCo layered double hydroxides for electrocatalyst and supercapacitor electrode[J]. Science China Materials, 2021, 64(3): 581-591.
|
16 |
ZHAO D P, DAI M Z, LIU H Q, et al. PPy film anchored on ZnCo2O4 nanowires facilitating efficient bifunctional electrocatalysis[J]. Materials Today Energy, 2021, 20: doi: 10.1016/j.mtener.2021.100637.
|
17 |
LIU H Q, ZHAO D P, LIU Y, et al. Boosting energy storage and electrocatalytic performances by synergizing CoMoO4@MoZn22 core-shell structures[J]. Chemical Engineering Journal, 2019, 373: 485-492.
|
18 |
ZHAO D P, DAI M Z, LIU H Q, et al. Sulfur-induced interface engineering of hybrid NiCo2O4@NiMo2S4 structure for overall water splitting and flexible hybrid energy storage[J]. Advanced Materials Interfaces, 2019, 6(21): doi: 10.1002/admi.201901308.
|
19 |
HU P F, LIU Y, LIU H Q, et al. MnCo2O4 nanosheet/NiCo2S4 nanowire heterostructures as cathode materials for capacitors[J]. ACS Applied Nano Materials, 2021, 4(2): 2183-2189.
|
20 |
张拯, 刘铁军, 邓加春, 等. 熔盐法制备亚微米Co3O4超级电容器电极材料[J]. 人工晶体学报, 2015, 44(5): 1166-1170.
|
|
ZHANG Z, LIU T J, DENG J C, et al. Preparation of Co3O4 submicron supercapacitor electrode materials by molten salt method[J]. Journal of Synthetic Crystals, 2015, 44(5): 1166-1170.
|
21 |
孔令斌, 李玉刚, 刘卯成, 等. Co3O4纳米颗粒的制备及其超级电容性能研究[J]. 应用化工, 2012, 41(1): 102-105.
|
|
KONG L B, LI Y G, LIU M C, et al. Preparation and supercapacitive properties evaluation of Co3O4 nanoparticles[J]. Applied Chemical Industry, 2012, 41(1): 102-105.
|
22 |
邓亚锋, 原勇强, 崔艳华, 等. 一步水热法制备泡沫镍@C/Co3O4超级电容器电极材料[J]. 材料导报, 2013, 27(S2): 179-180, 183.
|
|
DENG Y F, YUAN Y Q, CUI Y H, et al. One-step hydrothermal method preparation of Ni foam@C/Co3O4 pseudocapacitors material[J]. Materials Review, 2013, 27(S2): 179-180, 183.
|