储能科学与技术 ›› 2022, Vol. 11 ›› Issue (3): 739-759.doi: 10.19799/j.cnki.2095-4239.2022.0051

• 储能新材料设计与先进表征专刊 • 上一篇    下一篇

数据驱动的机器学习在电化学储能材料研究中的应用

施思齐1,2,5(), 涂章伟1, 邹欣欣3, 孙拾雨2, 杨正伟3, 刘悦3,4()   

  1. 1.上海大学材料科学与工程学院
    2.上海大学材料基因组工程研究院
    3.上海大学计算机工程与 科学学院
    4.上海市智能计算系统工程技术研究中心,上海 200444
    5.之江实验室,浙江 杭州 311100
  • 收稿日期:2022-01-31 修回日期:2022-02-10 出版日期:2022-03-05 发布日期:2022-03-11
  • 通讯作者: 刘悦 E-mail:sqshi@shu.edu.cn;yueliu@shu.edu.cn
  • 作者简介:施思齐(1978—),男,教授,研究方向为电化学储能材料基础科学问题解析、计算方法发展和新材料设计,E-mail:sqshi@shu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2021YFB3802100);国家自然科学基金面上项目(52073169);之江实验室科研攻关项目(2021PE0AC02)

Applying data-driven machine learning to studying electrochemical energy storage materials

Siqi SHI1,2,5(), Zhangwei TU1, Xinxin ZOU3, Shiyu SUN2, Zhengwei YANG3, Yue LIU3,4()   

  1. 1.School of Materials Science and Engineering, Shanghai University
    2.Materials Genome Institute, Shanghai University
    3.School of Computer Engineering and Science, Shanghai University
    4.Shanghai Engineering Research Center of Intelligent Computing System, Shanghai, 200444, China
    5.Zhejiang Laboratory, Hangzhou 311100, Zhejiang, China
  • Received:2022-01-31 Revised:2022-02-10 Online:2022-03-05 Published:2022-03-11
  • Contact: Yue LIU E-mail:sqshi@shu.edu.cn;yueliu@shu.edu.cn

摘要:

储能电池的关键是材料。继实验观测、理论研究和计算模拟之后,数据驱动的机器学习具有快速捕捉材料成分-结构-工艺-性能间复杂构效关系的优势,有望为电化学储能材料的研发提供新的范式。本文从结构化和非结构化数据驱动两方面,系统评述了机器学习在电化学储能材料研究中的最新进展。全面概括了可用于电化学储能材料机器学习的国内外材料数据库,分析了其数据的收集、共享和质量检测存在的问题;重点阐述了电化学储能材料中机器学习的工作流程和应用,包括结构化数据驱动下数据收集、特征工程和机器学习建模以及图形、表征图像和文献文本这类非结构化数据驱动下的模型构建和应用。进一步,厘清电化学储能材料领域机器学习面临的三大矛盾且给出对策,即高维度与小样本数据的矛盾与协调、模型复杂性与易用性的矛盾与统一、模型学习结果与专家经验的矛盾与融合,并提出构建“领域知识嵌入的机器学习方法”有望调和这些矛盾。本文将为机器学习在电化学储能材料设计和性能优化中的应用提供参考。

关键词: 电化学储能材料, 机器学习, 材料数据库, 领域知识

Abstract:

Materials are key to energy storage batteries. With experimental observations, theoretical research, and computational simulations, data-driven machine learning should provide a new paradigm for electrochemical energy storage material research and development. Its advantages include rapid capture of the complex structure-activity relationship between material composition, structure, process, and performance. In this study, the latest developments in employing machine learning in electrochemical energy storage materials are reviewed systematically from structured and unstructured data-driven perspectives. The material databases from China and abroad are summarized for electrochemical energy storage material use, and data collection and quality inspection problems are analyzed. Data-driven machine learning workflows and applications in electrochemical energy storage materials are demonstrated. They contain data collection, feature engineering, and machine learning modeling under structured data, and the model construction and application under unstructured data of graphics, representation images, and literature. Three principal contradictions and countermeasures faced by machine learning in electrochemical energy storage materials are highlighted: the contradiction and coordination of high-dimensional and small sample data, the contradiction and unity of model complexity and ease of use, and the contradiction and contradiction fusion between model learning results and expert experience. We highlighted that "Machine Learning Embedded with Domain Knowledge" construction should reconcile these contradictions. This review provides a reference for applying machine learning in electrochemical energy storage materials' design and performance optimization.

Key words: electrochemical energy storage materials, machine learning, materials database, domain knowledge

中图分类号: