1 |
ZHANG H, LI C M, ESHETU G G, et al. From solid-solution electrodes and the rocking-chair concept to today's batteries[J]. Angewandte Chemie International Edition, 2020, 59(2): 534-538.
|
2 |
GREY C P, HALL D S. Prospects for lithium-ion batteries and beyond—A 2030 vision[J]. Nature Communications, 2020, 11(1): 6279.
|
3 |
FENG K, LI M, LIU W W, et al. Silicon-based anodes for lithium-ion batteries: From fundamentals to practical applications[J]. Small, 2018, 14(8): doi: 10.1002/smll.201702737.
|
4 |
HORSTMANN B, SHI J Y, AMINE R, et al. Strategies towards enabling lithium metal in batteries: Interphases and electrodes[J]. Energy & Environmental Science, 2021, 14(10): 5289-5314.
|
5 |
CHEN Y, WANG T Y, TIAN H J, et al. Advances in lithium-sulfur batteries: From academic research to commercial viability[J]. Advanced Materials, 2021, 33(29): doi: 10.1002/adma.202003666.
|
6 |
LIU T, VIVEK J P, ZHAO E W, et al. Current challenges and routes forward for nonaqueous lithium-air batteries[J]. Chemical Reviews, 2020, 120(14): 6558-6625.
|
7 |
WANG H C, ZHU J P, SU Y, et al. Interfacial compatibility issues in rechargeable solid-state lithium metal batteries: A review[J]. Science China Chemistry, 2021, 64(6): 879-898.
|
8 |
WANG X F, ZHANG M H, ALVARADO J, et al. New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM[J]. Nano Letters, 2017, 17(12): 7606-7612.
|
9 |
LI Y Z, LI Y B, PEI A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362): 506-510.
|
10 |
EGERTON R F. Radiation damage to organic and inorganic specimens in the TEM[J]. Micron, 2019, 119: 72-87.
|
11 |
ZACHMAN M J, TU Z Y, CHOUDHURY S, et al. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560(7718): 345-349.
|
12 |
LEE J Z, WYNN T A, SCHROEDER M A, et al. Cryogenic focused ion beam characterization of lithium metal anodes[J]. ACS Energy Letters, 2019, 4(2): 489-493.
|
13 |
WANG X F, LI Y J, MENG Y S. Cryogenic electron microscopy for characterizing and diagnosing batteries[J]. Joule, 2018, 2(11): 2225-2234.
|
14 |
LIU Y J, JU Z J, ZHANG B L, et al. Visualizing the sensitive lithium with atomic precision: Cryogenic electron microscopy for batteries[J]. Accounts of Chemical Research, 2021, 54(9): 2088-2099.
|
15 |
罗强. 聚焦离子束加工中的缺陷及成因[J]. 电子显微学报, 2016, 35(1): 58-62.
|
|
LUO Q. Drawbacks in the focused ion beam processing and the causes[J]. Journal of Chinese Electron Microscopy Society, 2016, 35(1): 58-62.
|
16 |
WENG S T, LI Y J, WANG X F. Cryo-EM for battery materials and interfaces: Workflow, achievements, and perspectives[J]. iScience, 2021, 24(12): doi: 10.1016/j.isci.2021.103402.
|
17 |
JU Z J, YUAN H D, SHENG O W, et al. Cryo-electron microscopy for unveiling the sensitive battery materials[J]. Small Science, 2021, 1(11): doi: 10.1002/smsc.202100055.
|
18 |
REN X C, ZHANG X Q, XU R, et al. Analyzing energy materials by cryogenic electron microscopy[J]. Advanced Materials, 2020, 32(24): doi: 10.1002/adma.201908293.
|
19 |
CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473.
|
20 |
LI J W, KONG Z, LIU X X, et al. Strategies to anode protection in lithium metal battery: A review[J]. InfoMat, 2021, 3(12): 1333-1363.
|
21 |
WANG X F, PAWAR G, LI Y J, et al. Glassy Li metal anode for high-performance rechargeable Li batteries[J]. Nature Materials, 2020, 19(12): 1339-1345.
|
22 |
HUANG S Z, YANG J F, MA L X, et al. Effectively regulating more robust amorphous Li clusters for ultrastable dendrite-free cycling[J]. Advanced Science, 2021, 8(19): doi: 10.1002/advs.202101584.
|
23 |
WU J X, IHSAN-UL-HAQ M, CHEN Y M, et al. Understanding solid electrolyte interphases: Advanced characterization techniques and theoretical simulations[J]. Nano Energy, 2021, 89: doi: 10.1016/j.nanoen.2021.106489.
|
24 |
ZHANG S M, YANG G J, LIU S, et al. Understanding the dropping of lithium plating potential in carbonate electrolyte[J]. Nano Energy, 2020, 70: doi: 10.1016/j.nanoen.2020.104486.
|
25 |
PELED E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—The solid electrolyte interphase model[J]. Journal of the Electrochemical Society, 1979, 126(12): 2047-2051.
|
26 |
YUAN S Y, WENG S T, WANG F, et al. Revisiting the designing criteria of advanced solid electrolyte interphase on lithium metal anode under practical condition[J]. Nano Energy, 2021, 83: doi: 10.1016/j.nanoen.2021.105847.
|
27 |
YANG G J, LI Y J, LIU S, et al. LiFSI to improve lithium deposition in carbonate electrolyte[J]. Energy Storage Materials, 2019, 23: 350-357.
|
28 |
ZHANG S M, YANG G J, LIU Z P, et al. Competitive solvation enhanced stability of lithium metal anode in dual-salt electrolyte[J]. Nano Letters, 2021, 21(7): 3310-3317.
|
29 |
PELED E, GOLODNITSKY D, ARDEL G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes[J]. Journal of the Electrochemical Society, 1997, 144(8): L208-L210.
|
30 |
AURBACH D, EIN-ELY Y, ZABAN A. The surface chemistry of lithium electrodes in alkyl carbonate solutions[J]. Journal of the Electrochemical Society, 1994, 141(1): L1-L3.
|
31 |
LI N W, YIN Y X, YANG C P, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes[J]. Advanced Materials, 2016, 28(9): 1853-1858.
|
32 |
YU Z A, CUI Y, BAO Z N. Design principles of artificial solid electrolyte interphases for lithium-metal anodes[J]. Cell Reports Physical Science, 2020, 1(7): doi: 10.1016/j.xcrp.2020.100119.
|
33 |
ZHANG K, WU F, ZHANG K, et al. Chlorinated dual-protective layers as interfacial stabilizer for dendrite-free lithium metal anode[J]. Energy Storage Materials, 2021, 41: 485-494.
|
34 |
MOGENSEN M B, HENNESØ E. Properties and structure of the LiCl-films on lithium anodes in liquid cathodes[J]. Acta Chimica Slovenica, 2016, 63(3): 519-534.
|
35 |
FAN X L, JI X, CHEN L, et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nature Energy, 2019, 4(10): 882-890.
|
36 |
SU C C, HE M N, CAI M, et al. Solvation-protection-enabled high-voltage electrolyte for lithium metal batteries[J]. Nano Energy, 2022, 92: doi: 10.1016/j.nanoen.2021.106720.
|
37 |
ZHANG X Q, CHENG X B, CHEN X, et al. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries[J]. Advanced Functional Materials, 2017, 27(10): doi: 10.1002/adfm.201605989.
|
38 |
MARKEVICH E, SALITRA G, AURBACH D. Fluoroethylene carbonate as an important component for the formation of an effective solid electrolyte interphase on anodes and cathodes for advanced Li-ion batteries[J]. ACS Energy Letters, 2017, 2(6): 1337-1345.
|
39 |
HUANG W, WANG H S, BOYLE D T, et al. Resolving nanoscopic and mesoscopic heterogeneity of fluorinated species in battery solid-electrolyte interphases by cryogenic electron microscopy[J]. ACS Energy Letters, 2020, 5(4): 1128-1135.
|
40 |
HE Y, JIANG L, CHEN T W, et al. Progressive growth of the solid-electrolyte interphase towards the Si anode interior causes capacity fading[J]. Nature Nanotechnology, 2021, 16(10): 1113-1120.
|
41 |
HAN B, ZOU Y C, XU G Y, et al. Additive stabilization of SEI on graphite observed using cryo-electron microscopy[J]. Energy & Environmental Science, 2021, 14(9): 4882-4889.
|
42 |
HUANG W, ATTIA P M, WANG H S, et al. Evolution of the solid-electrolyte interphase on carbonaceous anodes visualized by atomic-resolution cryogenic electron microscopy[J]. Nano Letters, 2019, 19(8): 5140-5148.
|
43 |
ZHANG X, WENG S T, YANG G J, et al. Interplay between solid-electrolyte interphase and (in)active LixSi in silicon anode[J]. Cell Reports Physical Science, 2021, 2(12): doi: 10.1016/j.xcrp. 2021.100668.
|
44 |
刘洋洋, 王旭阳, 徐谢宇, 等. 锂金属负极用集流体改性研究及进展[J]. 储能科学与技术, 2021, 10(4): 1261-1272.
|
|
LIU Y Y, WANG X Y, XU X Y, et al. Research progresses on modified current collector for lithium metal anode[J]. Energy Storage Science and Technology, 2021, 10(4): 1261-1272.
|
45 |
RUPP R, CAERTS B, VANTOMME A, et al. Lithium diffusion in copper[J]. The Journal of Physical Chemistry Letters, 2019, 10(17): 5206-5210.
|
46 |
LI Y, LIU M Q, FENG X, et al. How can the electrode influence the formation of the solid electrolyte interface?[J]. ACS Energy Letters, 2021, 6(9): 3307-3320.
|
47 |
ZHANG S M, YANG G J, LIU Z P, et al. Phase diagram determined lithium plating/stripping behaviors on lithiophilic substrates[J]. ACS Energy Letters, 2021, 6(11): 4118-4126.
|
48 |
CUI J, YAO S S, IHSAN-UL-HAQ M, et al. Correlation between Li plating behavior and surface characteristics of carbon matrix toward stable Li metal anodes[J]. Advanced Energy Materials, 2019, 9(1): doi: 10.1002/aenm.201802777.
|
49 |
YANG G J, LIU Z P, WENG S T, et al. Iron carbide allured lithium metal storage in carbon nanotube cavities[J]. Energy Storage Materials, 2021, 36: 459-465.
|
50 |
YANG G J, ZHANG S M, TONG Y X, et al. Minimizing carbon particle size to improve lithium deposition on natural graphite[J]. Carbon, 2019, 155: 9-15.
|
51 |
YANG G J, LI Y J, TONG Y X, et al. Lithium plating and stripping on carbon nanotube sponge[J]. Nano Letters, 2019, 19(1): 494-499.
|
52 |
YANG G J, ZHANG S M, WENG S T, et al. Anionic effect on enhancing the stability of a solid electrolyte interphase film for lithium deposition on graphite[J]. Nano Letters, 2021, 21(12): 5316-5323.
|
53 |
XU T H, GAO P, LI P R, et al. Fast-charging and ultrahigh-capacity lithium metal anode enabled by surface alloying[J]. Advanced Energy Materials, 2020, 10(8): doi: 10.1002/aenm.201902343.
|
54 |
KIM M S, DEEPIKA, LEE S H, et al. Enabling reversible redox reactions in electrochemical cells using protected LiAl intermetallics as lithium metal anodes[J]. Science Advances, 2019, 5(10): doi: 10.1126/sciadv.aax5587.
|
55 |
FAN H M, CHEN B, LI S, et al. Nanocrystalline Li-Al-Mn-Si foil as reversible Li host: Electronic percolation and electrochemical cycling stability[J]. Nano Letters, 2020, 20(2): 896-904.
|
56 |
LI X Y, YANG G J, ZHANG S M, et al. Improved lithium deposition on silver plated carbon fiber paper[J]. Nano Energy, 2019, 66: doi: 10.1016/j.nanoen.2019.104144.
|
57 |
张桥保, 龚正良, 杨勇. 硫化物固态电解质材料界面及其表征的研究进展[J]. 物理学报, 2020, 69(22): 159-186.
|
|
ZHANG Q B, GONG Z L, YANG Y. Advance in interface and characterizations of sulfide solid electrolyte materials[J]. Acta Physica Sinica, 2020, 69(22): 159-186.
|
58 |
陆敬予, 柯承志, 龚正良, 等. 原位表征技术在全固态锂电池中的应用[J]. 物理学报, 2021, 70(19): 236-262.
|
|
LU J Y, KE C Z, GONG Z L, et al. Application of in situ characterization techniques in all-solid-state lithium batteries[J]. Acta Physica Sinica, 2021, 70(19): 236-262.
|
59 |
LI Y J, WANG X F, ZHOU H Y, et al. Thin solid electrolyte layers enabled by nanoscopic polymer binding[J]. ACS Energy Letters, 2020, 5(3): 955-961.
|
60 |
CHENG D Y, WYNN T A, WANG X F, et al. Unveiling the stable nature of the solid electrolyte interphase between lithium metal and LiPON via cryogenic electron microscopy[J]. Joule, 2020, 4(11): 2484-2500.
|
61 |
ZHANG L L, CHEN X, WAN F, et al. Enhanced electrochemical kinetics and polysulfide traps of indium nitride for highly stable lithium-sulfur batteries[J]. ACS Nano, 2018, 12(9): 9578-9586.
|
62 |
孙春水, 郭德才, 陈剑. 碳化木耳多孔碳的制备及在硫正极中的应用[J]. 储能科学与技术, 2021, 10(6): 2060-2068.
|
|
SUN C S, GUO D C, CHEN J. Preparation and research of carbonized agaric material for sulfur cathodes[J]. Energy Storage Science and Technology, 2021, 10(6): 2060-2068.
|
63 |
XING X, LI Y J, WANG X F, et al. Cathode electrolyte interface enabling stable Li-S batteries[J]. Energy Storage Materials, 2019, 21: 474-480.
|
64 |
翁素婷, 张庆华, 谷林. 原位电子显微学方法在材料研究中的应用[J]. 电子显微学报, 2019, 38(5): 556-568.
|
|
WENG S T, ZHANG Q H, GU L. Application of in situ electron microscopy in materials research[J]. Journal of Chinese Electron Microscopy Society, 2019, 38(5): 556-568.
|
65 |
柯承志, 肖本胜, 李苗, 等. 电极材料储锂行为及其机制的原位透射电镜研究进展[J]. 储能科学与技术, 2021, 10(4): 1219-1236.
|
|
KE C Z, XIAO B S, LI M, et al. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy[J]. Energy Storage Science and Technology, 2021, 10(4): 1219-1236.
|