储能科学与技术 ›› 2022, Vol. 11 ›› Issue (3): 760-780.doi: 10.19799/j.cnki.2095-4239.2021.0703

• 储能新材料设计与先进表征专刊 • 上一篇    下一篇

冷冻电镜表征锂电池中的辐照敏感材料

翁素婷1,2(), 刘泽鹏1,2, 杨高靖1,2, 张思蒙1,3, 张啸1,3, 方遒1,3, 李叶晶1,2, 王兆翔1,2,3, 王雪锋1,2,3,4(), 陈立泉1   

  1. 1.中国科学院物理研究所,北京 100190
    2.中国科学院大学物理科学学院
    3.中国科学院大学 材料科学与光电技术学院,北京 100049
    4.天目湖先进储能技术研究院有限公司,江苏 溧阳 213300
  • 收稿日期:2021-12-24 修回日期:2022-01-05 出版日期:2022-03-05 发布日期:2022-03-11
  • 通讯作者: 王雪锋 E-mail:wengsuting@iphy.ac.cn;wxf@iphy.ac.cn
  • 作者简介:翁素婷(1996—),女,博士研究生,研究方向为辐照敏感材料的冷冻电镜表征,E-mail:wengsuting@iphy.ac.cn
  • 基金资助:
    国家自然科学基金项目(52172257);北京市自然科学基金(2020000233)

Cryogenic electron microscopycryo-EMcharacterizing beam-sensitive materials in lithium metal batteries

Suting WENG1,2(), Zepeng LIU1,2, Gaojing YANG1,2, Simeng ZHANG1,3, Xiao ZHANG1,3, Qiu FANG1,3, Yejing LI1,2, Zhaoxiang WANG1,2,3, Xuefeng WANG1,2,3,4(), Liquan CHEN1   

  1. 1.Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
    2.School of Physical Sciences, University of Chinese Academy of Sciences
    3.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
    4.Tianmu Lake Institute of Advanced Energy Storage Technologies Co. Ltd. , Liyang 213300, Jiangsu, China
  • Received:2021-12-24 Revised:2022-01-05 Online:2022-03-05 Published:2022-03-11
  • Contact: Xuefeng WANG E-mail:wengsuting@iphy.ac.cn;wxf@iphy.ac.cn

摘要:

冷冻电镜(cryo-EM)是表征辐照敏感材料的有力工具,已经在生命科学领域得到了广泛的应用和认可,并在2017年获得了诺贝尔化学奖。同年,冷冻电镜首次被应用于观察金属锂的纳米结构,取得了一些前所未有的结果,从此也在电池领域备受关注和蓬勃发展。冷冻或低温不仅可以有效地缓解高能电子束对样品造成的辐照损伤,而且可以大幅降低样品的反应活性,提高样品的稳定性。冷冻电镜可以为辐照敏感材料提供纳米甚至是原子尺度的微观结构信息。本文重点介绍了冷冻电镜在表征锂电池中辐照敏感材料的相关应用和成果,包括冷冻聚焦离子束-扫描电子显微镜(cryo-FIB-SEM)和冷冻透射电子显微镜(cryo-TEM),以便读者了解冷冻电镜在解析电池工作机理和指导材料结构设计等方面发挥的优势和作用。随后,展示了冷冻电镜在金属锂的沉积/溶解行为、固体电解质界面(SEI)膜的纳米结构、亲锂材料的储锂机理、全固态电池中固-固界面以及正极材料表面的固体电解质界面(CEI)膜等方面的应用与研究成果。最后,展望了冷冻电镜在未来的技术发展及其在电池领域的潜在应用与机遇。冷冻电镜技术的发展将有助于解析电池材料与界面结构,了解电池运行和失效机制,从而促进高比能和高安全性电池的发展。

关键词: 冷冻电镜(cryo-EM), 冷冻聚焦离子束-扫描电子显微镜(cryo-FIB-SEM), 冷冻透射电子显微镜(cryo-TEM), 金属锂电池, 固体电解质界面(SEI)膜, 正极电解质界面(CEI)膜

Abstract:

Cryogenic electron microscopy (cryo-EM), a powerful tool for the characterization of beam-sensitive materials, has been widely used in the life sciences and was awarded the Noble Prize in Chemistry in 2017. It was also used for the first time to visualize the nanostructure of lithium metal and yield some unprecedented results, attracting much attention and applications in the battery field. Cryo-treatment or low temperature can not only effectively alleviate the radiation damage produced by the high-energy electron beam, but it can also greatly reduce the reactivity and enhance the stability of the sample. Cryo-EM can provide structural information at the nano and even atomic scale. This review focuses on cryo-EM applications and achievements for Li metal batteries, including cryogenic focused ion beam-scanning electron microscopy (cryo-FIB-SEM) and cryogenic transmission electron microscopy (cryo-TEM). It will assist the audience in comprehending the benefits and essential role of cryo-EM in exploring the operating principle of batteries and illuminating material design. The plating and stripping behaviors of the Li metal, the nanostructure of the solid electrolyte interphase (SEI), the Li-storage mechanism of lithiophilic substrates, solid-solid interfaces in all-solid-state batteries, and cathode electrolyte interphase (CEI) are all applications of interest. Finally, we provide a perspective on the future technological development of cryo-EM as well as its potential application and opportunities in the battery field. The advancement of cryo-EM is expected to contribute to probing the structures of battery materials and interfaces, understanding the failure mechanisms, and thus facilitate the development of higher-energy and safer batteries.

Key words: cryogenic electron microscopy (cryo-EM), cryogenic focus ion beam-scanning electron microscopy (cryo-FIB-SEM), cryogenic transmission electron microscopy (cryo-TEM), lithium metal battery, solid electrolyte interphase (SEI), cathode electrolyte interphase (CEI)

中图分类号: