1 |
陈启梅, 郑春晓, 李海英. 基于文献计量的储能技术国际发展态势分析[J]. 储能科学与技术, 2020, 9(1): 296-305.
|
|
CHEN Q M, ZHENG C X, LI H Y. Analysis on international development trend of energy storage technology based on bibliometrics[J]. Energy Storage Science and Technology, 2020, 9(1): 296-305.
|
2 |
李先锋, 张洪章, 郑琼, 等. 能源革命中的电化学储能技术[J]. 中国科学院院刊, 2019, 34(4): 443-449.
|
|
LI X F, ZHANG H Z, ZHENG Q, et al. Electrochemical energy storage technology in energy revolution[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 443-449.
|
3 |
陈雪丹, 陈硕翼, 乔志军, 等. 超级电容器的应用[J]. 储能科学与技术, 2016, 5(6): 800-806.
|
|
CHEN X D, CHEN S Y, QIAO Z J, et al. Applications of supercapacitors[J]. Energy Storage Science and Technology, 2016, 5(6): 800-806.
|
4 |
ROGERS J A, CHEN X D, FENG X. Flexible hybrid electronics[J]. Advanced Materials, 2020, 32(15): doi:10.1002/adma.201905590.
|
5 |
SUYUTI H. 惊艳远不止折叠屏[J]. 技术与市场, 2019, 26(11): 5-10.
|
|
SUYUTI H. Flexible electronics are far more impressive than folding screens[J]. Technology and Market, 2019, 26(11): 5-10.
|
6 |
黄维. 做强柔性电子, 打造"中国碳谷"[N]. 中国科学报, 2020: 1203.
|
|
HUANG W. Strengthen flexible electronics to creat "China's carbon valley"[N]. China Science Daily, 2020: 1203.
|
7 |
WANG S W, WANG F, WANG P Y, et al. 3D porous graphene composite film embedded by Ni/NiO nanoparticles as freestanding electrodes for efficient energy storage devices[J]. Nanotechnology, 2020, 31(47): 1-10.
|
8 |
RELEKAR B P, FULARI A V, LOHAR G M, et al. Development of porous manganese oxide/polyaniline composite using electrochemical route for electrochemical supercapacitor[J]. Journal of Electronic Materials, 2019, 48(4): 2449-2455.
|
9 |
RAJESH M, MANIKANDAN R, KIM B C, et al. Electrochemical polymerization of chloride doped PEDOT hierarchical porous nanostructure on graphite as a potential electrode for high performance supercapacitor[J]. Electrochimica Acta, 2020, 354: doi:10.1016/j.electacta.2020.136669.
|
10 |
VAN NGO T, MOUSSA M, TUNG T T, et al. Hybridization of MOFs and graphene: A new strategy for the synthesis of porous 3D carbon composites for high performing supercapacitors[J]. Electrochimica Acta, 2020, 329: doi:10.1016/j.electacta.2019.135104.
|
11 |
FARAJI M, MOHAMMADZADEH AYDISHEH H. Facile and scalable preparation of highly porous polyvinyl chloride-multi walled carbon nanotubes-polyaniline composite film for solid-state flexible supercapacitor[J]. Composites Part B: Engineering, 2019, 168: 432-441.
|
12 |
LE T H, KIM Y, YOON H. Electrical and electrochemical properties of conducting polymers[J]. Polymers, 2017, 9(4): 150.
|
13 |
CHANDRASEKHAR P. Conducting polymers, fundamentals and applications[M/OL]. 2nd ed. Springer US, 2018:[2021-01-01]. https://doi.org/10.1007/978-3-319-69378-1.
|
14 |
GUO X, FACCHETTI A. The journey of conducting polymers from discovery to application [J]. Nature Materials, 2020, 19 (9): 922-928.
|
15 |
EDITORIAL. Conducting polymers forward[J]. Nature Materials, 2020, 19(9): 921.
|
16 |
MENG Q F, CAI K F, CHEN Y X, et al. Research progress on conducting polymer based supercapacitor electrode materials[J]. Nano Energy, 2017, 36: 268-285.
|
17 |
HUANG Y, LI H F, WANG Z F, et al. Nanostructured polypyrrole as a flexible electrode material of supercapacitor[J]. Nano Energy, 2016, 22: 422-438.
|
18 |
TIAN Y Y, YANG C, SONG X F, et al. Engineering the volumetric effect of polypyrrole for auto-deformable supercapacitor[J]. Chemical Engineering Journal, 2019, 374: 59-67.
|
19 |
TIAN Y Y, SONG X F, LIU J, et al. Generation of monolayer MoS2 with 1T phase by spatial-confinement-induced ultrathin PPy anchoring for high-performance supercapacitor[J]. Advanced Materials Interfaces, 2019, 6(10): doi: 10.1002/admi.201900162.
|
20 |
TIAN Y Y, LIU J, SONG X F, et al. Interface guide: In-situ integrating MoS2 nanosheets into highly ordered polypyrrole film for high performance flexible supercapacitor electrodes[J]. Composites Science and Technology, 2020, 197: doi:10.1016/j.compscitech.2020.108263.
|
21 |
PANIGRAHI K, HOWLI P, CHATTOPADHYAY K K. 3D network of V2O5 for flexible symmetric supercapacitor[J]. Electrochimica Acta, 2020, 337: doi:10.1016/j.electacta.2020.135701.
|
22 |
ZHAI S X, JIN K L, ZHOU M, et al. A novel high performance flexible supercapacitor based on porous carbonized cotton/ZnO nanoparticle/CuS micro-sphere[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 584:doi:10.1016/j.colsurfa.2019.124025.
|
23 |
CHENG Q H, YANG C, HAN L, et al. Construction of hierarchical 2D PANI/Ni3S2 nanosheet arrays on Ni foam for high-performance asymmetric supercapacitors[J]. Batteries & Supercaps, 2020, 3(4): 370-375.
|
24 |
SORAM B S, THANGJAM I S, DAI J Y, et al. Flexible transparent supercapacitor with core-shell Cu@Ni@NiCoS nanofibers network electrode[J]. Chemical Engineering Journal, 2020, 395:doi:10.1016/j.cej.2020.125019.
|
25 |
BEYAZAY T, OZTUNA F E S, UNAL O, et al. Free-standing N-doped reduced graphene oxide papers decorated with iron oxide nanoparticles: Stable supercapacitor electrodes[J]. ChemElectroChem, 2019, 6(14): 3774-3781.
|
26 |
TIWARI P, JANAS D, CHANDRA R. Self-standing MoS2/CNT and MnO2/CNT one dimensional core shell heterostructures for asymmetric supercapacitor application[J]. Carbon, 2021, 177: 291-303.
|
27 |
XIAO L D, QI H J, QU K Q, et al. Layer-by-layer assembled free-standing and flexible nanocellulose/porous Co3O4 polyhedron hybrid film as supercapacitor electrodes[J]. Advanced Composites and Hybrid Materials, 2021, 4(2): 306-316.
|
28 |
LIU Q F, ZANG L M, QIAO X, et al. Compressible all-in-one supercapacitor with adjustable output voltage based on polypyrrole-coated melamine foam[J]. Advanced Electronic Materials, 2019, 5(12): doi: 10.1002/aelm.201900724.
|
29 |
LINDSTRÖM H, SÖDERGREN S, SOLBRAND A, et al. Li+ ion insertion in TiO2 (anatase). 2. voltammetry on nanoporous films[J]. The Journal of Physical Chemistry B, 1997, 101(39): 7717-7722.
|
30 |
YAN J, REN C E, MALESKI K, et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance[J]. Advanced Functional Materials, 2017, 27(30): doi:10.1002/adfm.201701264.
|
31 |
AUGUSTYN V, COME J, LOWE M A, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nature Materials, 2013, 12(6): 518-522.
|
32 |
ARDIZZONE S, FREGONARA G, TRASATTI S. "Inner" and "outer" active surface of RuO2 electrodes[J]. Electrochimica Acta, 1990, 35(1): 263-267.
|
33 |
YANG C H, TANG Y, TIAN Y P, et al. Achieving of flexible, free-standing, ultracompact delaminated titanium carbide films for high volumetric performance and heat-resistant symmetric supercapacitors[J]. Advanced Functional Materials, 2018, 28(15): doi:10.1002/adfm.201705487.
|