储能科学与技术 ›› 2022, Vol. 11 ›› Issue (5): 1583-1591.doi: 10.19799/j.cnki.2095-4239.2021.0482

• 储能系统与工程 • 上一篇    下一篇

模块化多电平复合变换器电池储能系统容错控制策略

田峰(), 程志江(), 杨涵棣, 杨天翔   

  1. 新疆大学电气工程学院,新疆 乌鲁木齐 830046
  • 收稿日期:2021-09-15 修回日期:2021-09-24 出版日期:2022-05-05 发布日期:2022-05-07
  • 通讯作者: 程志江 E-mail:tianfeng066@163.com;67078267@qq.com
  • 作者简介:田峰(1994—),男,硕士研究生,主要研究方向为模块化多电平电池储能系统,电力电子应用及控制,E-mail:tianfeng066@163.com
  • 基金资助:
    新疆维吾尔自治区自然科学基金项目(2021D01C046)

Fault-tolerant control strategy for modular multi-level hybrid converter battery energy storage system

Feng TIAN(), Zhijiang CHENG(), Handi YANG, Tianxiang YANG   

  1. School of Electric and Engineering, Xinjiang University, Urumqi 830046, Xinjiang, China
  • Received:2021-09-15 Revised:2021-09-24 Online:2022-05-05 Published:2022-05-07
  • Contact: Zhijiang CHENG E-mail:tianfeng066@163.com;67078267@qq.com

摘要:

模块化多电平复合变换器电池储能系统(modular multi-level hybrid convert-battery energy storage system, MMHC-BESS)适用于中低压电网,有利于解决可再生能源并网问题。但随着子模块数量的增加,系统的可靠性面临着巨大的挑战。为增强储能系统的容错运行能力,针对子模块故障下的不平衡运行状态,提出无硬件冗余容错的控制策略,基于载波移相调制,通过调制波重构算法维持线电压平衡及并网功率恒定。此外,为提升储能电池容量利用率,针对容错运行模式下的荷电状态(SOC)均衡策略进行了研究,通过零序电压注入及动态调节相内SOC均衡因子构成相间、相内两级SOC均衡策略。最后基于PLECS软件搭建仿真模型,验证了所提策略的可实施性及有效性。

关键词: MMHC, 容错控制, 电池储能系统, 荷电状态(SOC)均衡

Abstract:

Battery energy storage system based on modular multilevel converter (MMHC-BESS) is suitable for medium and low voltage power grid, which is conducive to solve the problem of renewable energy grid connection. But as the number of sub-modules increases, the reliability of the system is facing great challenges. To enhance the fault-tolerant operation capability of energy storage systems, aiming at the unbalanced operation state of sub module fault, a fault-tolerant control strategy without hardware redundancy is proposed. Based on carrier phase-shift modulation algorithm, the line voltage balance and grid connected power are maintained by modulation signal reconstruction algorithm. In addition, in order to improve the utilization rate of energy storage battery capacity, a SOC equalization strategy based on fault-tolerant control is proposed. Through zero-sequence voltage injection and dynamic adjustment of in-phase SOC equalization factors, an inter-phase and in-phase two-stage SOC equalization strategy is constructed. Finally, a simulation model based on PLECS is built to verify the feasibility and effectiveness of the proposed strategy.

Key words: MMHC, fault-tolerant control, battery energy storage system, state of charge (SOC)

中图分类号: