储能科学与技术 ›› 2022, Vol. 11 ›› Issue (5): 1617-1626.doi: 10.19799/j.cnki.2095-4239.2021.0637

• 储能测试与评价 • 上一篇    下一篇

基于改进TCN模型的动力电池健康状态评估

张孝远(), 张金浩, 蒋亚俊   

  1. 河南工业大学电气工程学院,河南 郑州 450001
  • 收稿日期:2021-11-30 修回日期:2021-12-15 出版日期:2022-05-05 发布日期:2022-05-07
  • 通讯作者: 张孝远 E-mail:freedom@haut.edu.cn
  • 作者简介:张孝远(1981—),男,博士,副教授,主要研究方向为电力设备维护自动化,E-mail:freedom@haut.edu.cn
  • 基金资助:
    河南工业大学粮食信息处理与控制教育部重点实验室开放基金项目(KFJJ-2016-110)

Power battery health evaluation based on improved TCN model

Xiaoyuan ZHANG(), Jinhao ZHANG, Yajun JIANG   

  1. College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
  • Received:2021-11-30 Revised:2021-12-15 Online:2022-05-05 Published:2022-05-07
  • Contact: Xiaoyuan ZHANG E-mail:freedom@haut.edu.cn

摘要:

电动汽车动力电池的健康状态(state of heath,SOH)是电池管理系统重点监测指标之一,对其进行精确评估对于整车安全可靠运行具有重要意义。但现有动力电池SOH评估方法存在评估精度不理想、计算复杂度高等问题,为此提出一种基于改进时间卷积网络(Temporal convolutional network,TCN)模型的动力电池SOH评估方法。该方法首先从动力电池充电数据中提取等电压上升时间、等电流下降时间、电压回升数值三个健康因子,并采用皮尔森相关系数验证了其与电池容量之间的相关关系;然后根据TCN模型的感受野对编码器-解码器结构进行调整,通过训练后的编码器对输入序列进行特征提取,获取到长时间序列的短时表达;最后利用TCN模型捕获特征时间序列与电池SOH之间的因果关系,实现对动力电池SOH的精确评估。所提方法应用于公开电池数据集,并将实验结果与当前广泛采用的时间序列分析方法及相关文献中所用方法进行对比,结果表明所提方法可使均方根误差和绝对平均误差分别降低0.0012和0.0008,相同训练次数所需计算时间减少3.4%。

关键词: 动力电池, 健康状态, 编码器, TCN

Abstract:

The state of heath (SOH) of the power battery of an electric vehicle is one of the key monitoring indicators of its battery management system. Accurate evaluation of it is of great significance for the safe and reliable operation of the vehicle. However, existing power battery SOH evaluation methods have problems such as unsatisfactory evaluation accuracy and high computational complexity. For this reason, a power battery health status evaluation method based on an improved Temporal Convolutional Network (TCN) model is proposed. This method first extracts three health factors of equal voltage rise time, equal current fall time, and voltage rise value from the power battery charging data, and uses Pearson correlation coefficient to verify the correlation between them and the battery capacity; then according to the TCN model The receptive field adjusts the encoder-decoder structure, and uses the trained encoder to extract features of the input sequence to obtain the short-term expression of the long-term sequence; finally, the TCN model is used to capture the characteristic time sequence and the battery SOH. Causality, to achieve accurate assessment of the health status of the power battery. The proposed method is applied to the public battery data set, and the experimental results are compared with the widely used time series analysis methods and methods used in related literature. The results show that the proposed method can reduce the root mean square error and absolute average error by 0.0012 respectively. And 0.0008, the calculation time required for the same training times is reduced by 3.4%.

Key words: power battery, health status, encoder, TCN

中图分类号: