1 |
DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.
|
2 |
SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.
|
3 |
SUN L, LIU Y X, SHAO R, et al. Recent progress and future perspective on practical silicon anode-based lithium ion batteries[J]. Energy Storage Materials, 2022, 46: 482-502.
|
4 |
LI H D, LI H Y, LAI Y Z, et al. Revisiting the preparation progress of nano-structured Si anodes toward industrial application from the perspective of cost and scalability[J]. Advanced Energy Materials, 2022, 12(7): doi: 10.1002/aenm.202102181.
|
5 |
ZHU G J, CHAO D L, XU W L, et al. Microscale silicon-based anodes: Fundamental understanding and industrial prospects for practical high-energy lithium-ion batteries[J]. ACS Nano, 2021, 15(10): 15567-15593.
|
6 |
ZHANG C Z, WANG F, HAN J, et al. Challenges and recent progress on silicon-based anode materials for next-generation lithium-ion batteries[J]. Small Structures, 2021, 2(6): doi: 10.1002/sstr.202100009.
|
7 |
LIU Z H, YU Q, ZHAO Y L, et al. Silicon oxides: A promising family of anode materials for lithium-ion batteries[J]. Chemical Society Reviews, 2019, 48(1): 285-309.
|
8 |
TAO W, WANG P, YOU Y, et al. Strategies for improving the storage performance of silicon-based anodes in lithium-ion batteries[J]. Nano Research, 2019, 12(8): 1739-1749.
|
9 |
LI H Y, LI H D, YANG Z W, et al. SiOx anode: From fundamental mechanism toward industrial application[J]. Small, 2021, 17(51): doi: 10.1002/smll.202102641.
|
10 |
SEE C H, HARRIS A T. A comparison of carbon nanotube synthesis in fixed and fluidised bed reactors[J]. Chemical Engineering Journal, 2008, 144(2): 267-269.
|
11 |
TEAH H Y, SATO T, NAMIKI K, et al. Life cycle greenhouse gas emissions of long and pure carbon nanotubes synthesized via on-substrate and fluidized-bed chemical vapor deposition[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(4): 1730-1740.
|
12 |
GELDART D. Types of gas fluidization[J]. Powder Technology, 1973, 7(5): 285-292.
|
13 |
PHILIPPE R, MORANÇAIS A, CORRIAS M, et al. Catalytic production of carbon nanotubes by fluidized-bed CVD[J]. Chemical Vapor Deposition, 2007, 13(9): 447-457.
|
14 |
ZHOU Y, ZHU J. A review on fluidization of geldart group C powders through nanoparticle modulation[J]. Powder Technology, 2021, 381: 698-720.
|
15 |
CHEN Y H, YANG J, DAVE R N, et al. Fluidization of coated group C powders[J]. AIChE Journal, 2008, 54(1): 104-121.
|
16 |
NOTLEY S M, NORGREN M. Surface energy and wettability of spin-coated thin films of lignin isolated from wood[J]. Langmuir, 2010, 26(8): 5484-5490.
|
17 |
LIANG Y, HAN Y F, LI J S, et al. Wettability control in electrocatalyst: A mini review[J]. Journal of Energy Chemistry, 2021: doi: 10.1016/j.jechem.2021.09.005.
|
18 |
LEI C, ZHU Q S, LI H Z. Experimental and theoretical study on the fluidization behaviors of iron powder at high temperature[J]. Chemical Engineering Science, 2014, 118: 50-59.
|
19 |
WEN X R, ZHANG D S, YAN T T, et al. Three-dimensional graphene-based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization[J]. Journal of Materials Chemistry A, 2013, 1(39): 12334.
|
20 |
ZHANG Z H, YANG W M, CHENG L S, et al. Carbon fibers with high electrical conductivity: Laser irradiation of mesophase pitch filaments obtains high graphitization degree[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(48): 17629-17638.
|
21 |
FRICKE M, KÖHNE M, BOTHE D. A kinematic evolution equation for the dynamic contact angle and some consequences[J]. Physica D: Nonlinear Phenomena, 2019, 394: 26-43.
|
22 |
ZUBAR T I, FEDOSYUK V M, TRUKHANOV A V, et al. Control of growth mechanism of electrodeposited nanocrystalline NiFe films[J]. Journal of the Electrochemical Society, 2019, 166(6): D173-D180.
|
23 |
LOZOVOY K A, KOROTAEV A G, KOKHANENKO A P, et al. Kinetics of epitaxial formation of nanostructures by Frank-van der Merwe, Volmer-Weber and Stranski-Krastanow growth modes[J]. Surface and Coatings Technology, 2020, 384: doi: 10.1016/j.surfcoat. 2019.125289.
|
24 |
RAJ R, MAROO S C, WANG E N. Wettability of graphene[J]. Nano Letters, 2013, 13(4): 1509-1515.
|