储能科学与技术 ›› 2024, Vol. 13 ›› Issue (8): 2687-2695.doi: 10.19799/j.cnki.2095-4239.2024.0153

• 储能系统与工程 • 上一篇    下一篇

植物工厂储热装置性能强化研究

葛群1(), 梁涛1, 侯彬2, 王万红2, 张龙1, 吴梁玉3, 张程宾4, 刘向东3()   

  1. 1.山东电力工程咨询院有限公司,山东 济南 250013
    2.五凌电力有限公司,湖南 长沙 410004
    3.扬州大学电气与能源动力工程学院,江苏 扬州 225127
    4.东南大学能源与环境 学院,江苏 南京 210096
  • 收稿日期:2024-02-27 修回日期:2024-03-15 出版日期:2024-08-28 发布日期:2024-08-15
  • 通讯作者: 刘向东 E-mail:gequn@sdepci.com;liuxd@yzu.edu.cn
  • 作者简介:葛群(1978—),男,本科,高级工程师,研究方向为电力系统,E-mail:gequn@sdepci.com
  • 基金资助:
    国家自然科学基金项目(52376077)

Performance enhancement of thermal energy storage units for plant factories

Qun GE1(), Tao LIANG1, Bin HOU2, Wanhong WANG2, Long ZHANG1, Liangyu WU3, Chengbin ZHANG4, Xiangdong LIU3()   

  1. 1.Shandong Electric Power Engineering Consulting Institute Co. , Ltd. , Ji'nan 250013, Shandong, China
    2.Wuling Power Co. , Ltd. , Changsha 410004, Hunan, China
    3.College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
    4.School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu, China
  • Received:2024-02-27 Revised:2024-03-15 Online:2024-08-28 Published:2024-08-15
  • Contact: Xiangdong LIU E-mail:gequn@sdepci.com;liuxd@yzu.edu.cn

摘要:

为克服固液相变材料的低导热性缺点,本文在传统的套管式固液相变储热器中引入了泡沫金属结合金属肋片的传热强化手段,在储热器内部部分填充泡沫金属以进一步加快储热过程。本文探索了多种不同的储热器内部分填充泡沫金属的设置方式,基于enthalpy-porosity方法对相变材料储热熔化过程进行了数值研究,对比了不同泡沫金属设置方式下储热器内相变材料的动态熔化规律、温度响应特点、储热器的无量纲储热量与储热器经济性的差异。结果表明,配置泡沫金属后,相变材料熔化时间最大可缩短约85%,泡沫金属填充位置对其强化性能起到了决定性的作用。泡沫金属填充于远离热媒管的肋片末端与储热器外壳之间是最优的泡沫金属布置形式,其单位时间储热量是未配置泡沫金属的储热器的6.5倍。最后,本文针对具有最优泡沫金属布置形式的储热器在多种不同加热温度下的熔化过程进行了计算,提出了基于傅里叶数Fo与斯蒂芬数Ste的相变材料熔化进程预测拟合公式。本研究有助于推动固液相变储热技术的发展,为设计应用于植物工厂的太阳能光热相变储热器提供参考和指导。

关键词: 植物工厂, 储热, 相变材料, 性能强化

Abstract:

To overcome the low thermal conductivity of PCM, a heat transfer enhancement approach involving metal foam combined with metal fins is introduced for tube-shell latent-energy storage units (LESUs). The metal foam is partially filled in the LESU to further accelerate the heat transfer process during energy storage. Various configurations of the metal foam are examined in this study. Based on the enthalpy-porosity method, the enhanced melting process of PCM using metal fins and foam in a LESU is numerically investigated. The dynamic melting process, temperature response, dimensionless heat storage capacity, and economical efficiency of the LESU with different configurations of metal foam are compared. The results show that metal foam is highly effective in enhancing the energy storage process in PCM systems as the melting time of PCM can be reduced by up to 85%. The filling position of the foam metal also plays a crucial role in the performance enhancement of this system. It is found that the optimal configuration of the metal foam is achieved by filling it between the tip of the fin, which is directed away from the heat transfer fluid, and the shell of the LESU. The thermal energy storage capacity per unit time in the LESU with an optimal metal-foam configuration 6.5-times that of an LESU without metal foam. Based on the optimal LESU, the variation of the liquid fraction of PCM under different heating temperatures are calculated and nondimensionalized. A fitting formula for predicting the melting process of PCM based on the Fourier number (Fo) and Stefan number (Ste) is proposed. This work furthers the development of solid-liquid phase-change thermal storage technology and provides guidance for the design of solar photovoltaic LESUs for application in plant factories.

Key words: plant factory, thermal energy storage, phase change material, performance enhancement

中图分类号: