1 |
GRAAMANS L, VAN DEN DOBBELSTEEN A, MEINEN E, et al. Plant factories; crop transpiration and energy balance[J]. Agricultural Systems, 2017, 153: 138-147. DOI: 10.1016/j.agsy.2017.01.003.
|
2 |
陈慧子, 石惠娴, 裴晓梅, 等. 太阳能光伏-地源热泵式供能植物工厂空调系统[J]. 建筑节能, 2013, 41(11): 1-8, 20. DOI: 10.3969/j.issn.1673-7237.2013.11.001.
|
|
CHEN H Z, SHI H X, PEI X M, et al. Integrated solar photovoltaic and ground source heat pump air-condition system of the plant factory[J]. Building Energy Efficiency, 2013, 41(11): 1-8, 20. DOI: 10.3969/j.issn.1673-7237.2013.11.001.
|
3 |
KIKUCHI Y, KANEMATSU Y, YOSHIKAWA N, et al. Environmental and resource use analysis of plant factories with energy technology options: A case study in Japan[J]. Journal of Cleaner Production, 2018, 186: 703-717. DOI: 10.1016/j.jclepro.2018.03.110.
|
4 |
PEREIRA DA CUNHA J, EAMES P. Thermal energy storage for low and medium temperature applications using phase change materials–A review[J]. Applied Energy, 2016, 177: 227-238. DOI: 10.1016/j.apenergy.2016.05.097.
|
5 |
杨玉清. 相变储热技术在绿色建筑中的实践与应用[J]. 储能科学与技术, 2023, 12(12): 3886-3888. DOI: 10.19799/j.cnki.2095-4239.2023.0853.
|
|
YANG Y Q. Practice and application of phase change thermal storage technology in green buildings[J]. Energy Storage Science and Technology, 2023, 12(12): 3886-3888. DOI: 10.19799/j.cnki.2095-4239.2023.0853.
|
6 |
罗意彬, 段文超, 严景好, 等. 双翅片矩形相变储能单元蓄热性能实验研究[J]. 储能科学与技术, 2024, 13(2): 405-415. DOI: 10.19799/j.cnki.2095-4239.2023.0627.
|
|
LUO Y B, DUAN W C, YAN J H, et al. Experimental study on heat storage performance of a double-fin rectangular phase change energy storage unit[J]. Energy Storage Science and Technology, 2024, 13(2): 405-415. DOI: 10.19799/j.cnki.2095-4239.2023.0627.
|
7 |
TEGGAR M, LAOUER A, ARıCı M, et al. Heat transfer enhancement of ice storage systems: A systematic review of the literature[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(21): 11611-11632. DOI: 10.1007/s10973-022-11431-3.
|
8 |
侯立强, 阎帅, 钮晓博, 等. 基于主动旋转的螺旋翅片储热单元传热性能优化分析[J]. 电力科技与环保, 2023, 39(6): 553-560.
|
|
HOU L Q, YAN S, NIU X B, et al. Analysis of the heat transfer performance of spiral fin heat storage units under active rotation conditions[J]. Electric Power Technology and Environmental Protection, 2023, 39(6): 553-560.
|
9 |
ZHANG C B, SUN Q, CHEN Y P. Solidification behaviors and parametric optimization of finned shell-tube ice storage units[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118836. DOI: 10.1016/j.ijheatmasstransfer.2019.118836.
|
10 |
NAPLOCHA K, DMITRUK A, KACZMAR J, et al. Effects of cellular metals on the performances and durability of composite heat storage systems[J]. International Journal of Heat and Mass Transfer, 2017, 114: 1214-1219. DOI: 10.1016/j.ijheatmasstransfer. 2017.07.028.
|
11 |
ACIR A, EMIN CANLI M. Investigation of fin application effects on melting time in a latent thermal energy storage system with phase change material (PCM)[J]. Applied Thermal Engineering, 2018, 144: 1071-1080. DOI: 10.1016/j.applthermaleng.2018.09.013.
|
12 |
SCIACOVELLI A, GAGLIARDI F, VERDA V. Maximization of performance of a PCM latent heat storage system with innovative fins[J]. Applied Energy, 2015, 137: 707-715. DOI: 10.1016/j.apenergy.2014.07.015.
|
13 |
吴梁玉, 孙清, 吕浩男, 等. 翅片管强化方腔蓄冰性能的数值研究[J]. 东南大学学报(自然科学版), 2018, 48(4): 639-645. DOI: 10.3969/j.issn.1001-0505.2018.04.008.
|
|
WU L Y, SUN Q, LÜ H N, et al. Numerical study on enhancement of ice storage performance in rectangular tank by finned tube[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(4): 639-645. DOI: 10.3969/j.issn.1001-0505.2018.04.008.
|
14 |
LOU X J, WANG H. Role of copper foam on solidification performance of ice-cool storage sphere system[J]. Journal of Energy Storage, 2022, 47: DOI: 10.1016/j.est.2021.103552.
|
15 |
YU C, PENG Q, LIU X D, et al. Role of metal foam on ice storage performance for a cold thermal energy storage (CTES) system[J]. Journal of Energy Storage, 2020, 28: DOI: 10.1016/j.est.2020.101201.
|
16 |
LOU X J, WANG H, XIANG H X. Solidification performance enhancement of encapsulated ice storage system by fins and copper foam[J]. International Journal of Refrigeration, 2022, 134: 293-303. DOI: 10.1016/j.ijrefrig.2021.11.027.
|
17 |
XU Y, LI M J, ZHENG Z J, et al. Melting performance enhancement of phase change material by a limited amount of metal foam: Configurational optimization and economic assessment[J]. Applied Energy, 2018, 212: 868-880. DOI: 10.1016/j.apenergy.2017.12.082.
|
18 |
WANG H, YING Q F, LICHTFOUSE E, et al. Effect of filling configurations on melting heat transfer characteristic of phase change materials partially filled with metal foam[J]. Journal of Energy Storage, 2023, 69: DOI: 10.1016/j.est.2023.107858.
|
19 |
YU C, HUANG Y P, ZHANG C B. Role of metal foam in solidification performance for a latent heat storage unit[J]. International Journal of Energy Research, 2020, 44(3): 2110-2125. DOI: 10.1002/er.5069.
|
20 |
TIAN Y, ZHAO C Y. A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals[J]. Energy, 2011, 36(9): 5539-5546. DOI: 10.1016/j.energy.2011.07.019.
|