储能科学与技术 ›› 2025, Vol. 14 ›› Issue (3): 1010-1025.doi: 10.19799/j.cnki.2095-4239.2024.1159

• 储能新锐科学家专刊 • 上一篇    下一篇

聚乙二醇基定型复合相变材料的研究进展

全瑞星1(), 缪文晶1, 袁长顺1, 程广贵1, 赵彦琦1,2()   

  1. 1.江苏大学机械工程学院,江苏 镇江 212013
    2.南京工业大学能源科学与工程学院,江苏 南京 211816
  • 收稿日期:2024-12-06 修回日期:2024-12-26 出版日期:2025-03-28 发布日期:2025-04-28
  • 通讯作者: 赵彦琦 E-mail:2222203067@stmail.ujs.edu.cn;y.zhao@njtech.edu.cn
  • 作者简介:全瑞星(2000—),男,硕士研究生,从事相变材料研究,E-mail:2222203067@stmail.ujs.edu.cn
  • 基金资助:
    国家自然科学基金(52206253);江苏省科协青年科技人才托举工程(TJ-2022-068);南通市“揭榜挂帅”攻坚计划项目(JB2022002);江苏大学人工智能与智能制造学院大学生创新实践基金(ZXJG2023025)

Advancements in polyethylene glycol-based form-stable composite phase change materials

Ruixing QUAN1(), Wenjing MIAO1, Changshun YUAN1, Guanggui CHNEG1, Yanqi ZHAO1,2()   

  1. 1.School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
    2.School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
  • Received:2024-12-06 Revised:2024-12-26 Online:2025-03-28 Published:2025-04-28
  • Contact: Yanqi ZHAO E-mail:2222203067@stmail.ujs.edu.cn;y.zhao@njtech.edu.cn

摘要:

基于相变材料的潜热储热技术近年来得到了广泛关注。聚乙二醇是一种高潜热的无毒有机固-液相变材料。其良好的生物相容性、相变温度与焓值可调节性,相对其他有机相变材料,在热管理、可穿戴设备等领域有着更广阔的应用场景。但聚乙二醇会发生固-液相变导致泄漏和自身热导率较低的问题限制了其实际应用。为了解决这些问题,许多聚乙二醇的定型方法应运而生。除了常用于制备定型相变材料的共混、包裹、吸附等物理方法,聚乙二醇两端的活性羟基使得通过化学改性将聚乙二醇转化为固-固相变材料具有了可行性。本文首先综述了物理共混法、微胶囊法、纤维法、多孔材料吸附法、化学改性法等制备聚乙二醇基定型复合相变材料的不同手段并比较了性能。然后介绍了聚乙二醇基定型复合相变材料在电子器件热管理、光热转换、建筑节能、可穿戴设备等领域的应用进展。最后分析了聚乙二醇基定型复合相变材料仍然存在热导率低、复合后相变焓值下降等问题与挑战,并指出了未来研究方向。

关键词: 相变材料, 聚乙二醇, 定型相变, 复合材料

Abstract:

Latent heat storage technology based on phase change materials (PCMs) has received extensive attention in recent years. Polyethylene glycol (PEG) is a non-toxic organic solid-liquid PCM with high latent heat. Compared to other organic PCMs, its excellent biocompatibility, adjustable phase change temperature, and tunable enthalpy make PEG highly versatile in thermal management, wearable devices, and other fields. However, its low thermal conductivity and leakage during solid-liquid phase transformation limit its practical applications. To address these problems, many methods have been developed to stabilize PEG. Besides commonly used physical methods such as blending, coating, and adsorption, the active hydroxyl groups at both ends of PEG enables its conversion into a solid-solid PCM through chemical modification. Herein, different techniques, including physical blending, microcapsule, fiber, porous material adsorption, and chemical modification, for preparing PEG-based form-stable composite PCMs are reviewed, and their properties are compared. Additionally, recent advances in PEG-based PCMs for the thermal management of electronic devices, photothermal conversion, building energy efficiency, and wearable devices are discussed. Finally, challenges such as low thermal conductivity and reduced enthalpy during composite processing are analyzed, and future research directions are outlined.

Key words: phase change material, polyethylene glycol, form-stable phase change, composite material

中图分类号: