储能科学与技术 ›› 2025, Vol. 14 ›› Issue (3): 1026-1039.doi: 10.19799/j.cnki.2095-4239.2024.1177

• 储能新锐科学家专刊 • 上一篇    下一篇

纳米线调控固态电池离子输运与界面

肖子信(), 张泓, 徐林()   

  1. 武汉理工大学材料复合新技术国家重点实验室,湖北 武汉 430070
  • 收稿日期:2024-12-16 修回日期:2025-02-15 出版日期:2025-03-28 发布日期:2025-04-28
  • 通讯作者: 徐林 E-mail:1783713015@qq.com;linxu@whut.edu.cn
  • 作者简介:肖子信(2001—),男,硕士研究生,研究方向为高性能固态电池,包括聚合物/复合固态电解质的合成与设计、固态电池界面问题等。E-mail:1783713015@qq.com
  • 基金资助:
    国家自然科学基金面上项目(52272234);国家重点研发计划(2020YFA0715000)

Nanowires modulating ion transport and interfaces in solid-state lithium batteries

Zixin XIAO(), Hong ZHANG, Lin XU()   

  1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China
  • Received:2024-12-16 Revised:2025-02-15 Online:2025-03-28 Published:2025-04-28
  • Contact: Lin XU E-mail:1783713015@qq.com;linxu@whut.edu.cn

摘要:

固态电解质是下一代固态锂电池的关键组成部分,因此开发高性能固态电解质成为发展高安全性和高能量密度锂电池最重要的一环。然而,固态电解质中存在的离子输运和电极-电解质界面问题严重阻碍了其发展。在聚合物基体中加入无机填料制备复合固态电解质被认为是当前最具前景的方案。纳米线具有纳米级直径、大比表面积和优异的长径比等特点,可保持载流子连续传输,因此被广泛应用于固态电解质中,以促进锂离子的输运和增强电极-电解质之间的界面接触和稳定性,从而提高固态电池的循环性能和安全性。本文全面总结了用于固态电解质的纳米线材料的研究进展,并从降低聚合物基体的玻璃化转变温度和结晶度、促进锂盐的解离、限制阴离子的运动、减弱锂离子与聚合物链段之间的相互作用、形成新的锂离子输运路径、增强电极-电解质界面接触、提高电极-电解质界面稳定性几个方面详细介绍了纳米线调控离子输运和电极-电解质界面的机制。最后,总结并展望了基于纳米线固态电池的现有挑战和未来发展前景。本文旨在提供对纳米线调控固态电池离子输运与界面机制的全面认识,有望促进纳米线在固态电池中应用的发展。

关键词: 固态锂电池, 纳米线, 复合固态电解质, 离子输运, 电极-电解质界面

Abstract:

Solid-state electrolytes (SSEs) are crucial for next-generation lithium batteries, making the development of high-performance SSEs essential for achieving high safety and energy density. However, challenges related to lithium-ion transport and electrode-electrolyte interfaces in solid-state lithium batteries (SSLBs) have seriously hindered their development. Composite SSEs, formed by incorporating inorganic fillers into a polymer matrix, are considered the most promising option. Nanowires, with nanoscale diameter, high specific surface area, and excellent aspect ratio, enable continuous carrier transport, making them widely used in SSEs to promote lithium-ion transport and enhance electrode-electrolyte interfacial contact and stability, consequently improving the cycling performance and safety of SSLBs. Herein, wecomprehensively summarized recent progresses in nanowires for SSEs, detailing their role in regulating lithium-ion transport and electrode-electrolyte interfaces. Key mechanisms involve reducing the glass transition temperature and crystallinity of the polymer matrix, promoting the dissociation of lithium salts, restricting anion motion, attenuating the interactions between lithium ions and polymer chain segments, forming a new pathway for lithium-ion transport, enhancing electrode-electrolyte contact, and increasing the stability of electrode-electrolyte interfaces. Finally, existing challenges and prospects of nanowire-based SSLBs are discussed. This review aims to provide a comprehensive understanding of the mechanisms of nanowires regulating lithium-ion transport and interfacial stability, driving their further development in SSLBs.

Key words: solid-state lithium batteries, nanowires, composite solid-state electrolytes, ion transport, electrode-electrolyte interface

中图分类号: