1 |
LIN D C, LIU Y Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206.
|
2 |
WU T L, WANG Y Y, ZHANG W C, et al. Unveiling the role of lithiophilic sites denseness in regulating lithium ion deposition[J]. Journal of Energy Chemistry, 2022, 71: 324-332.
|
3 |
ZHENG J M, ENGELHARD M H, MEI D H, et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries[J]. Nature Energy, 2017, 2: 17012.
|
4 |
LIANG S T, YU Z J, MA T S, et al. Mechanistic insights into the structural modulation of transition metal selenides to boost potassium ion storage stability[J]. ACS Nano, 2021, 15(9): 14697-14708.
|
5 |
WANG X F, FU C K, FENG Z J, et al. Flyash/polymer composite electrolyte with internal binding interaction enables highly-stable extrinsic-interfaces of all-solid-state lithium batteries[J]. Chemical Engineering Journal, 2022, 428: 131041.
|
6 |
AN H W, LIU Q S, AN J L, et al. Coupling two-dimensional fillers with polymer chains in solid polymer electrolyte for room-temperature dendrite-free lithium-metal batteries[J]. Energy Storage Materials, 2021, 43: 358-364.
|
7 |
ZHOU Q, MA J, DONG S M, et al. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries[J]. Advanced Materials, 2019, 31(50): e1902029.
|
8 |
ZACHMAN M J, TU Z Y, CHOUDHURY S, et al. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560(7718): 345-349.
|
9 |
GERLACH P, BALDUCCI A. The influence of current density, rest time and electrolyte composition on the self-discharge of organic radical polymers[J]. Electrochimica Acta, 2021, 377: 138070.
|
10 |
WU T L, ZHANG W C, CAI J W, et al. Deciphering the dual functions of a silicon dioxide protective layer in regulating lithium-ion deposition[J]. Materials Advances, 2022, 3(12): 4797-4801.
|
11 |
LIANG J N, HWANG S, LI S, et al. Stabilizing and understanding the interface between nickel-rich cathode and PEO-based electrolyte by lithium niobium oxide coating for high-performance all-solid-state batteries[J]. Nano Energy, 2020, 78: 105107.
|
12 |
LIANG J N, SUN Y P, ZHAO Y, et al. Engineering the conductive carbon/PEO interface to stabilize solid polymer electrolytes for all-solid-state high voltage LiCoO2 batteries[J]. Journal of Materials Chemistry A, 2020, 8(5): 2769-2776.
|
13 |
张林森, 王士奇, 王利霞, 等. PEO基Li+-g-C3N4复合固态电解质的制备及其电化学性能[J]. 储能科学与技术, 2022, 11(11): 3463-3469.
|
|
ZHANG L S, WANG S Q, WANG L X, et al. Synthesis and performances of Li+ modified g-C3N4 for PEO-based composite solid electrolyte[J]. Energy Storage Science and Technology, 2022, 11(11): 3463-3469.
|
14 |
黄渭彬, 张彪, 范金成, 等. ZIF-8复合PEO基固态电解质的制备与改性研究[J]. 储能科学与技术, 2023, 12(4): 1083-1092.
|
|
HUANG W B, ZHANG B, FAN J C, et al. Preparation and modification of ZIF-8 composite PEO based solid electrolyte[J]. Energy Storage Science and Technology, 2023, 12(4): 1083-1092.
|
15 |
XUE X L, ZHANG X X, LIU Y C, et al. Boosting the performance of solid-state lithium battery based on hybridizing micron-sized LATP in a PEO/PVDF-HFP heterogeneous polymer matrix[J]. Energy Technology, 2020, 8(9): 2000444.
|
16 |
XU J R, LI J M, LI Y X, et al. Long-life lithium-metal all-solid-state batteries and stable Li plating enabled by InSitu formation of Li3PS4 in the SEI layer[J]. Advanced Materials, 2022, 34(34): e2203281.
|
17 |
FU F, ZHENG Y, JIANG N, et al. A Dual-Salt PEO-based polymer electrolyte with cross-linked polymer network for high-voltage lithium metal batteries[J]. Chemical Engineering Journal, 2022, 450: 137776.
|
18 |
WANG Y, CHEN S S, LI Z Y, et al. In-situ generation of fluorinated polycarbonate copolymer solid electrolytes for high-voltage Li-metal batteries[J]. Energy Storage Materials, 2022, 45: 474-483.
|
19 |
LI Y C, VEITH G M, BROWNING K L, et al. Lithium malonatoborate additives enabled stable cycling of 5 V lithium metal and lithium ion batteries[J]. Nano Energy, 2017, 40: 9-19.
|
20 |
FANG Z H, LUO Y F, LIU H T, et al. Boosting the oxidative potential of polyethylene glycol-based polymer electrolyte to 4.36 V by spatially restricting hydroxyl groups for high-voltage flexible lithium-ion battery applications[J]. Advanced Science, 2021, 8(16): e2100736.
|
21 |
YANG X F, JIANG M, GAO X J, et al. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: Main chain or terminal âOH group?[J]. Energy & Environmental Science, 2020, 13(5): 1318-1325.
|
22 |
WANG P, CHAI J C, ZHANG Z H, et al. An intricately designed poly(vinylene carbonate-acrylonitrile) copolymer electrolyte enables 5 V lithium batteries[J]. Journal of Materials Chemistry A, 2019, 7(10): 5295-5304.
|
23 |
WU M, WANG Z Y, ZHANG W R, et al. High-performance lithium metal batteries enabled by a fluorinated cyclic ether with a low reduction potential[J]. Angewandte Chemie International Edition, 2023, 62(8): e202216169.
|
24 |
ZHANG Z, WANG J L, YING H, et al. The role of active passivated interface in poly (ethylene oxide) electrolyte for 4.2 V solid-state lithium metal batteries[J]. Chemical Engineering Journal, 2023, 451(15):138680.
|
25 |
ZHANG Q P, ZHANG N N, YU T H, et al. High-performance PEO-based solid-state LiCoO2 lithium metal battery enabled by poly(acrylic acid) artificial cathode electrolyte interface[J]. Materials Today Energy, 2022, 29: 101128.
|
26 |
CHEN Y, CUI Y Y, WANG S M, et al. Durable and adjustable interfacial engineering of polymeric electrolytes for both stable Ni-rich cathodes and high-energy metal anodes[J]. Advanced Materials, 2023, 35(18): e2300982.
|