储能科学与技术 ›› 2023, Vol. 12 ›› Issue (10): 3075-3086.doi: 10.19799/j.cnki.2095-4239.2023.0401
汪心兰1,2(), 曾子琪1(), 张涵1, 雷盛1, 谢佳1()
收稿日期:
2023-06-09
修回日期:
2023-06-20
出版日期:
2023-10-05
发布日期:
2023-10-09
通讯作者:
曾子琪,谢佳
E-mail:wxl199917@163.com;ziqizeng@hust.edu.cn;xiejia@hust.edu.cn
作者简介:
汪心兰(1999—),女,硕士研究生,研究方向为电化学储能材料,E-mail:wxl199917@163.com;
基金资助:
Xinlan WANG1,2(), Ziqi ZENG1(), Han ZHANG1, Sheng LEI1, Jia XIE1()
Received:
2023-06-09
Revised:
2023-06-20
Online:
2023-10-05
Published:
2023-10-09
Contact:
Ziqi ZENG, Jia XIE
E-mail:wxl199917@163.com;ziqizeng@hust.edu.cn;xiejia@hust.edu.cn
摘要:
随着便携式电子设备和电动汽车的快速发展,对具有高能量密度和安全性的锂离子电池提出了迫切需求。开发具有宽电化学窗口和不易燃的电解液对于实现锂离子电池的高能量密度和安全性至关重要。然而,常规碳酸酯电解液存在电化学窗口较窄和易燃烧的问题,限制了其发展。在电解液中引入含氟化合物可以改善电解液的成膜性、氧化稳定性和燃烧性并可有效地提升电池的综合性能。本文从锂盐和溶剂两个方面综述了新型氟化物在锂离子电池电解液中的研究进展,首先介绍了三种新型含氟锂盐在热稳定性、电化学稳定性、成膜性以及对铝集流体的钝化能力等方面的特性,其次比较了碳酸酯、羧酸酯、醚、芳香烃等溶剂氟取代前后的物理化学性质,以及对电解液的离子电导率、界面形成能力、抗氧化性、宽温性能和易燃性等方面的影响,重点介绍了部分新型氟代碳酸酯、氟代醚及氟代芳香烃溶剂在锂离子电池电解液中的应用,最后总结了氟化物开发和应用中的科学挑战和局限性,并展望了其在锂离子电池电解液中的未来发展方向。
中图分类号:
汪心兰, 曾子琪, 张涵, 雷盛, 谢佳. 锂离子电池电解液中新型氟化物的研究进展[J]. 储能科学与技术, 2023, 12(10): 3075-3086.
Xinlan WANG, Ziqi ZENG, Han ZHANG, Sheng LEI, Jia XIE. Research progress of new fluorinated compounds in lithium-ion battery electrolytes[J]. Energy Storage Science and Technology, 2023, 12(10): 3075-3086.
1 | WINTER M, BARNETT B, XU K. Before Li ion batteries[J]. Chemical Reviews, 2018, 118(23): 11433-11456. |
2 | 丁徐强, 陶琦, 罗鹰. 锂离子电池在新能源汽车中的设计及应用[J]. 储能科学与技术, 2023, 12(5): 1751-1752. |
DING X Q, TAO Q, LUO Y. Design and application of lithium-ion battery in new energy vehicles[J]. Energy Storage Science and Technology, 2023, 12(5): 1751-1752. | |
3 | XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618. |
4 | TARASCON J M, GUYOMARD D. New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+ xMn2O4/carbon Li-ion cells[J]. Solid State Ionics, 1994, 69(3/4): 293-305. |
5 | AURBACH D, ZABAN A, SCHECHTER A, et al. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries: I. Li metal anodes[J]. Journal of the Electrochemical Society, 1995, 142(9): 2873-2882. |
6 | EIN-ELI Y, THOMAS S R, KOCH V, et al. Ethylmethylcarbonate, a promising solvent for Li-ion rechargeable batteries[J]. Journal of the Electrochemical Society, 1996, 143(12): L273-L277. |
7 | 张祖豪, 丁晓凯, 罗冬, 等. 富锂锰基层状氧化物正极材料面临的挑战及解决方案[J]. 储能科学与技术, 2021, 10(2): 408-424. |
ZHANG Z H, DING X K, LUO D, et al. Challenges and solutions of lithium-rich manganese-based layered oxide cathode materials[J]. Energy Storage Science and Technology, 2021, 10(2): 408-424. | |
8 | JIA H, XU W. Electrolytes for high-voltage lithium batteries[J]. Trends in Chemistry, 2022, 4(7): 627-642. |
9 | XIA L, YU L P, HU D, et al. Electrolytes for electrochemical energy storage[J]. Materials Chemistry Frontiers, 2017, 1(4): 584-618. |
10 | QIN M S, ZENG Z Q, WU Q, et al. Dipole-dipole interactions for inhibiting solvent co-intercalation into a graphite anode to extend the horizon of electrolyte design[J]. Energy & Environmental Science, 2023, 16(2): 546-556. |
11 | FAN X L, WANG C S. High-voltage liquid electrolytes for Li batteries: Progress and perspectives[J]. Chemical Society Reviews, 2021, 50(18): 10486-10566. |
12 | ZHENG L P, ZHANG H, CHENG P F, et al. Li [(FSO2)(n-C4F9SO2)N] versus LiPF6 for graphite/LiCoO2 lithium-ion cells at both room and elevated temperatures: A comprehensive understanding with chemical, electrochemical and XPS analysis[J]. Electrochimica Acta, 2016, 196: 169-188. |
13 | GUAN D C, HU G R, PENG Z D, et al. A nonflammable low-concentration electrolyte for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2022, 10(23): 12575-12587. |
14 | YANG Y, LI P L, WANG N, et al. Fluorinated carboxylate ester-based electrolyte for lithium ion batteries operated at low temperature[J]. Chemical Communications, 2020, 56(67): 9640-9643. |
15 | 陈晓霞, 刘凯, 王保国. 高安全性锂电池电解液研究与应用[J]. 储能科学与技术, 2020, 9(2): 583-592. |
CHEN X X, LIU K, WANG B G. Research on high-safety electrolytes and their application in lithiumion batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 583-592. | |
16 | CEKIC-LASKOVIC I, VON ASPERN N, IMHOLT L, et al. Synergistic effect of blended components in nonaqueous electrolytes for lithium ion batteries[J]. Topics in Current Chemistry, 2017, 375(2): 37. |
17 | QIN M S, ZENG Z Q, LIU X W, et al. Revealing surfactant effect of trifluoromethylbenzene in medium-concentrated PC electrolyte for advanced lithium-ion batteries[J]. Advanced Science, 2023, 10(12): doi: 10.1002/advs.202206648. |
18 | MCMILLAN R, SLEGR H, SHU Z X, et al. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes[J]. Journal of Power Sources, 1999, 81/82: 20-26. |
19 | INABA M, KAWATATE Y, FUNABIKI A, et al. STM study on graphite/electrolyte interface in lithium-ion batteries: Solid electrolyte interface formation in trifluoropropylene carbonate solution[J]. Electrochimica Acta, 1999, 45(1/2): 99-105. |
20 | BOLLOLI M, ALLOIN F, KALHOFF J, et al. Effect of carbonates fluorination on the properties of LiTFSI-based electrolytes for Li-ion batteries[J]. Electrochimica Acta, 2015, 161: 159-170. |
21 | MARTINEZ A C, RIGAUD S, GRUGEON S, et al. Chemical reactivity of lithium difluorophosphate as electrolyte additive in LiNi0.6Co0.2Mn0.2O2/graphite cells[J]. Electrochimica Acta, 2022, 426: 140765. |
22 | HUANG L B, LI G, LU Z Y, et al. trans-difluoroethylene carbonate as an electrolyte additive for microsized SiOx@C anodes[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 24916-24924. |
23 | LIU G P, XIA M, GAO J A, et al. Dual-salt localized high-concentration electrolyte for long cycle life silicon-based lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(2): 3586-3598. |
24 | WANG X J, LEE H S, LI H, et al. The effects of substituting groups in cyclic carbonates for stable SEI formation on graphite anode of lithium batteries[J]. Electrochemistry Communications, 2010, 12(3): 386-389. |
25 | YANG C, LIAO X B, ZHOU X, et al. Phosphate-rich interface for a highly stable and safe 4.6V LiCoO2 cathode[J]. Advanced Materials, 2023, 35(14): doi: 10.1002/adma.202210966. |
26 | QIN M S, LIU M C, ZENG Z Q, et al. Rejuvenating propylene carbonate-based electrolyte through nonsolvating interactions for wide-temperature Li-ions batteries[J]. Advanced Energy Materials, 2022, 12(48): doi: 10.1002/aenm.202201801. |
27 | 沈旻, 蒋志敏, 李南, 等. 高安全性锂离子电池电解液[J]. 储能科学与技术, 2018, 7(6): 1069-1081. |
SHEN M, JIANG Z M, LI N, et al. High safety electrolyte for lithium-ion battery[J]. Energy Storage Science and Technology, 2018, 7(6): 1069-1081. | |
28 | FAN X L, CHEN L, JI X, et al. Highly fluorinated interphases enable high-voltage Li-metal batteries[J]. Chem, 2018, 4(1): 174-185. |
29 | MO J S, YAO Y Q, LI C, et al. A low-concentration all-fluorinated electrolyte for stable lithium metal batteries[J]. Chemical Communications, 2022, 58(89): 12463-12466. |
30 | BIEKER P, WINTER M. Lithium-ionen-technologie und was danach kommen könnte[J]. Chemie in Unserer Zeit, 2016, 50(3): 172-186. |
31 | XU G J, SHANGGUAN X H, DONG S M, et al. Formulation of blended-lithium-salt electrolytes for lithium batteries[J]. Angewandte Chemie International Edition, 2020, 59(9): 3400-3415. |
32 | 谢宏, 黄锴, 杜进桥, 等. 锂离子电池电解液痕量水污染的超声表象[J]. 储能科学与技术, 2022, 11(12): 4030-4037. |
XIE H, HUANG K, DU J Q, et al. Studies on ultrasonic appearance of trace water contamination in lithium-ion battery electrolyte[J]. Energy Storage Science and Technology, 2022, 11(12): 4030-4037. | |
33 | XU C, RENAULT S, EBADI M, et al. LiTDI: A highly efficient additive for electrolyte stabilization in lithium-ion batteries[J]. Chemistry of Materials, 2017, 29(5): 2254-2263. |
34 | KOO B, LEE H, HWANG S, et al. Ionic conduction and speciation in LiPF6 and LiBF4 dimethyl sulfoxide electrolytes: Comparison with propylene carbonate electrolytes[J]. The Journal of Physical Chemistry C, 2023, 127(12): 5676-5682. |
35 | XUE Z M, ZHAO B H, CHEN C H. A new lithium salt with 3-fluoro-1,2-benzenediolato and lithium tetrafluoroborate for lithium battery electrolytes[J]. Journal of Power Sources, 2011, 196(15): 6478-6482. |
36 | GOLDMAN J L, MANK R M, YOUNG J H, et al. Structure-reactivity relationships of methylated tetrahydrofurans with lithium[J]. Journal of the Electrochemical Society, 1980, 127(7): 1461-1467. |
37 | PARK K, YU S, LEE C, et al. Comparative study on lithium borates as corrosion inhibitors of aluminum current collector in lithium bis(fluorosulfonyl)imide electrolytes[J]. Journal of Power Sources, 2015, 296: 197-203. |
38 | KIANI S, GHARIBI H, JAVADIAN S, et al. The effect of the SEI layer on the electrochemical impedance in the graphite/Li[Ni0.5Mn0.3Co0.2]O2 lithium-ion full cells[J]. Applied Surface Science, 2023, 633: 157638. |
39 | NIEDZICKI L, KASPRZYK M, KUZIAK K, et al. Liquid electrolytes based on new lithium conductive imidazole salts[J]. Journal of Power Sources, 2011, 196(3): 1386-1391. |
40 | BERHAUT C L, PORION P, TIMPERMAN L, et al. LiTDI as electrolyte salt for Li-ion batteries: Transport properties in EC/DMC[J]. Electrochimica Acta, 2015, 180: 778-787. |
41 | BERHAUT C L, DEDRYVÈRE R, TIMPERMAN L, et al. A new solvent mixture for use of LiTDI as electrolyte salt in Li-ion batteries[J]. Electrochimica Acta, 2019, 305: 534-546. |
42 | SHKROB I A, PUPEK K Z, GILBERT J A, et al. Chemical stability of lithium 2-trifluoromethyl-4, 5-dicyanoimidazolide, an electrolyte salt for Li-ion cells[J]. The Journal of Physical Chemistry C, 2016, 120(50): 28463-28471. |
43 | XU C, HERNÁNDEZ G, ABBRENT S, et al. Unraveling and mitigating the storage instability of fluoroethylene carbonate-containing LiPF6 electrolytes to stabilize lithium metal anodes for high-temperature rechargeable batteries[J]. ACS Applied Energy Materials, 2019, 2(7): 4925-4935. |
44 | PAN R J, CUI Z H, YI M, et al. Ethylene carbonate-free electrolytes for stable, safer high-nickel lithium-ion batteries[J]. Advanced Energy Materials, 2022, 12(19): doi: 10.1002/aenm.202103806. |
45 | LIAO C, HAN K S, BAGGETTO L, et al. Synthesis and characterization of lithium bis(fluoromalonato)borate for lithium-ion battery applications[J]. Advanced Energy Materials, 2014, 4(6): 1301368. |
46 | WAN S, JIANG X G, GUO B K, et al. A stable fluorinated and alkylated lithium malonatoborate salt for lithium ion battery application[J]. Chemical Communications, 2015, 51(48): 9817-9820. |
47 | LI Y C, WAN S, VEITH G M, et al. A novel electrolyte salt additive for lithium-ion batteries with voltages greater than 4.7 V[J]. Advanced Energy Materials, 2017, 7(4): 1601397. |
48 | HAN H B, GUO J, ZHANG D J, et al. Lithium (fluorosulfonyl)(nonafluorobutanesulfonyl)imide (LiFNFSI) as conducting salt to improve the high-temperature resilience of lithium-ion cells[J]. Electrochemistry Communications, 2011, 13(3): 265-268. |
49 | FANG Z, MA Q A, LIU P, et al. Novel concentrated Li [(FSO2)(n-C4F9SO2)N]-based ether electrolyte for superior stability of metallic lithium anode[J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4282-4289. |
50 | BAI P X, JI X A, ZHANG J X, et al. Formation of LiF-rich cathode-electrolyte interphase by electrolyte reduction[J]. Angewandte Chemie International Edition, 2022, 61(26): doi: 10.1002/anie.202202731. |
51 | HU S G, ZHAO H J, QIAN Y X, et al. Improved high-temperature performance of LiNi0.5Co0.2Mn0.3O2/artificial graphite lithium ion pouch cells by difluoroethylene carbonate[J]. Journal of Energy Storage, 2023, 57: 106266. |
52 | LUO C H, LIU Q, WANG X S, et al. Synergistic-effect of diluent to reinforce anion-solvation-derived interfacial chemistry for 4.5 V-class Li||LiCoO2 batteries[J]. Nano Energy, 2023, 109: 108323. |
53 | PHAM H Q, HWANG E H, KWON Y G, et al. Approaching the maximum capacity of nickel-rich LiNi0.8Co0.1Mn0.1O2 cathodes by charging to high-voltage in a non-flammable electrolyte of propylene carbonate and fluorinated linear carbonates[J]. Chemical Communications, 2019, 55(9): 1256-1258. |
54 | 封迈, 陈楠, 陈人杰. 锂离子电池低温电解液的研究进展[J]. 储能科学与技术, 2023, 12(3): 792-807. |
FENG M, CHEN N, CHEN R J. Research progress of low-temperature electrolyte for lithium-ion battery[J]. Energy Storage Science and Technology, 2023, 12(3): 792-807. | |
55 | LEI S, ZENG Z Q, LIU M C, et al. Balanced solvation/de-solvation of electrolyte facilitates Li-ion intercalation for fast charging and low-temperature Li-ion batteries[J]. Nano Energy, 2022, 98: 107265. |
56 | XIA L, CHEN M M, WANG F, et al. Partially fluorinated linear carboxylate esters employed as co-solvents for high-voltage lithium-ion batteries[J]. Journal of Power Sources, 2022, 526: 231152. |
57 | KOCH V R, YOUNG J H. The stability of the secondary lithium electrode in tetrahydrofuran-based electrolytes[J]. Journal of the Electrochemical Society, 1978, 125(9): 1371-1377. |
58 | CAMPBELL S A, BOWES C, MCMILLAN R S. The electrochemical behaviour of tetrahydrofuran and propylene carbonate without added electrolyte[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 284(1): 195-204. |
59 | XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4417. |
60 | ARAI J. Nonflammable methyl nonafluorobutyl ether for electrolyte used in lithium secondary batteries[J]. Journal of the Electrochemical Society, 2003, 150(2): A219. |
61 | XIA L, LEE S X, JIANG Y B, et al. Physicochemical and electrochemical properties of 1, 1, 2, 2-tetrafluoroethyl-2, 2, 3, 3-tetrafluoropropyl ether as a co-solvent for high-voltage lithium-ion electrolytes[J]. ChemElectroChem, 2019, 6(14): 3747-3755. |
62 | DAI W H, DONG N, XIA Y G, et al. Localized concentrated high-concentration electrolyte enhanced stability and safety for high voltage Li-ion batteries[J]. Electrochimica Acta, 2019, 320: 134633. |
63 | ZHENG H, ZHOU X, CHENG S, et al. High-voltage LiNi0.5Mn1.5O4 cathode stability of fluorinated ether based on enhanced separator wettability[J]. Journal of the Electrochemical Society, 2019, 166(8): A1456-A1462. |
64 | SHI P, FANG S H, LUO D, et al. A safe electrolyte based on propylene carbonate and non-flammable hydrofluoroether for high-performance lithium ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(9): A1991-A1999. |
65 | KIM C K, KIM K, SHIN K, et al. Synergistic effect of partially fluorinated ether and fluoroethylene carbonate for high-voltage lithium-ion batteries with rapid chargeability and dischargeability[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 44161-44172. |
66 | ZHANG H, ZENG Z Q, HE R J, et al. 1, 3, 5-Trifluorobenzene and fluorobenzene co-assisted electrolyte with thermodynamic and interfacial stabilities for high-voltage lithium metal battery[J]. Energy Storage Materials, 2022, 48: 393-402. |
67 | PENG X D, LIN Y K, WANG Y, et al. A lightweight localized high-concentration ether electrolyte for high-voltage Li-Ion and Li-metal batteries[J]. Nano Energy, 2022, 96: 107102. |
68 | LIU M C, LI X, ZHAI B Y, et al. Diluted high-concentration electrolyte based on phosphate for high-performance lithium-metal batteries[J]. Batteries & Supercaps, 2022, 5(5): doi: 10.1002/batt.202100407. |
69 | GU Y X, FANG S H, ZHANG X Y, et al. A non-flammable electrolyte for lithium-ion batteries containing lithium difluoro(oxalato)borate, propylene carbonate and tris(2, 2, 2-trifluoroethyl)phosphate[J]. Journal of the Electrochemical Society, 2020, 167(8): 080524. |
70 | OLDIGES K, ASPERN N, CEKIC‐LASKOVIC I, et al. Impact of trifluoromethylation of adiponitrile on aluminum dissolution behavior in dinitrile-based electrolytes[J]. Journal of The Electrochemical Society, 2018, 165(16): A3773-A3781. |
71 | SU C C, HE M N, REDFERN P C, et al. Oxidatively stable fluorinated sulfone electrolytes for high voltage high energy lithium-ion batteries[J]. Energy & Environmental Science, 2017, 10(4): 900-904. |
72 | WU H L, CHONG Y H, ONG H C, et al. Thermal stability of modified lithium-ion battery electrolyte by flame retardant, tris (2,2,2-trifluoroethyl) phosphite[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(6): 4245-4252. |
73 | MÖNNIGHOFF X, MURMANN P, WEBER W, et al. Post-mortem investigations of fluorinated flame retardants for lithium ion battery electrolytes by gas chromatography with chemical ionization[J]. Electrochimica Acta, 2017, 246: 1042-1051. |
74 | MURMANN P, VON ASPERN N, JANSSEN P, et al. Influence of the fluorination degree of organophosphates on flammability and electrochemical performance in lithium ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(9): A1935-A1942. |
[1] | 李悦, 王博, 吴楠. 石墨烯/Si/SiO x 纳米复合材料的制备及储锂性能研究[J]. 储能科学与技术, 2023, 12(9): 2752-2759. |
[2] | 曾少鸿, 吴伟雄, 刘吉臻, 汪双凤, 叶石丰, 冯振宇. 锂离子电池浸没式冷却技术研究综述[J]. 储能科学与技术, 2023, 12(9): 2888-2903. |
[3] | 陈欣, 李云伍, 梁新成, 李法霖, 张志冬. 基于模态分解的Transformer-GRU联合电池健康状态估计[J]. 储能科学与技术, 2023, 12(9): 2927-2936. |
[4] | 李纪伟, 刘睿涵, 吕桃林, 潘隆, 马常军, 李清波, 赵芝芸, 杨文, 解晶莹. 基于局部离群点检测和标准差方法的锂离子电池组早期故障诊断[J]. 储能科学与技术, 2023, 12(9): 2917-2926. |
[5] | 黄晓伟, 李少鹏, 张校刚. 负极补锂锂化裕度对电芯性能的影响及机理研究[J]. 储能科学与技术, 2023, 12(9): 2727-2734. |
[6] | 周向阳, 胡颖杰, 梁家浩, 周其杰, 文康, 陈松, 杨娟, 唐晶晶. 天然鳞片石墨球化尾料的高性能负极材料制备及储锂特性研究[J]. 储能科学与技术, 2023, 12(9): 2767-2777. |
[7] | 江婉薇, 梁呈景, 钱历, 刘梅城, 朱孟想, 马骏. 锡基三维石墨烯泡沫调控及其锂电池负极性能[J]. 储能科学与技术, 2023, 12(9): 2746-2751. |
[8] | 高欣, 王若谷, 高文菁, 邓泽军, 梁睿祺, 杨騉. 基于运行数据的储能电站电池组一致性评估方法[J]. 储能科学与技术, 2023, 12(9): 2937-2945. |
[9] | 官亦标, 沈进冉, 刘家亮, 渠展展, 高飞, 刘施阳, 郭翠静, 周淑琴, 付珊珊. 以安全高质量应用为导向的储能锂离子电池综合性能评价标准[J]. 储能科学与技术, 2023, 12(9): 2946-2953. |
[10] | 唐程波, 锁要红, 何昭坤. 基于正弦函数的液冷板上流体流向对锂离子电池散热性能的影响[J]. 储能科学与技术, 2023, 12(8): 2547-2555. |
[11] | 左安昊, 方儒卿, 李哲. 锂离子电池单颗粒动力学表征方法综述[J]. 储能科学与技术, 2023, 12(8): 2457-2481. |
[12] | 陈满, 程志翔, 赵春朋, 彭鹏, 雷旗开, 金凯强, 王青松. 锂离子电池储能集装箱爆炸危害数值模拟[J]. 储能科学与技术, 2023, 12(8): 2594-2605. |
[13] | 李聪, 王桃, 任延杰, 周立波, 陈荐, 陈维. 熔融碳酸盐燃料电池阴极溶解与防护[J]. 储能科学与技术, 2023, 12(8): 2444-2456. |
[14] | 夏恒恒, 梁鹏程, 安仲勋. 硫系电解液添加剂对镍钴锰酸锂//石墨锂离子电池性能的影响[J]. 储能科学与技术, 2023, 12(8): 2390-2400. |
[15] | 刘志浩, 杜童, 李瑞瑞, 邓涛. 宽温域、高电压、安全无EC电解液研究进展[J]. 储能科学与技术, 2023, 12(8): 2504-2525. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||