储能科学与技术 ›› 2025, Vol. 14 ›› Issue (3): 1040-1053.doi: 10.19799/j.cnki.2095-4239.2025.0137

• 储能新锐科学家专刊 • 上一篇    下一篇

复合相变材料用于锂离子电池热管理和热失控防护研究进展

张新宇1(), 罗声豪1, 吴颖欣1, 刘针莹1, 张立志1, 凌子夜1,2()   

  1. 1.华南理工大学化学与化工学院,传热强化与过程节能教育部重点实验室,广东 广州 510640
    2.广东省热能高效储存与利用工程技术研究中心,广东 广州 510640
  • 收稿日期:2025-02-20 修回日期:2025-03-06 出版日期:2025-03-28 发布日期:2025-04-28
  • 通讯作者: 凌子夜 E-mail:2290652654@qq.com;zyling@scut.edu.cn
  • 作者简介:张新宇(1998—),男,博士研究生,研究方向为相变电池热管理,E-mail:2290652654@qq.com
  • 基金资助:
    国家自然科学基金(22278145)

Research progress of composite phase change materials for thermal management and thermal runaway protection of lithium-ion batteries

Xinyu ZHANG1(), Shenghao LUO1, Yingxin WU1, Zhenying LIU1, Lizhi ZHANG1, Ziye LING1,2()   

  1. 1.Key Laboratory of Enhanced Heat Transfer and Energy Conservation, The Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
    2.Guangdong Engineering Technology Research Center of Efficient Heat Storage and Application, Guangzhou 510640, Guangdong, China
  • Received:2025-02-20 Revised:2025-03-06 Online:2025-03-28 Published:2025-04-28
  • Contact: Ziye LING E-mail:2290652654@qq.com;zyling@scut.edu.cn

摘要:

锂离子电池的性能和安全性对温度变化高度敏感。在低温环境下,电池容量衰减和充电效率显著降低,而高温运行时则加速性能退化并可能导致热失控。复合相变材料因其高效的热储存和温度调控能力,为电池全温域热管理提供了创新解决方案。在电池冷却方面,高焓值、高导热和柔性复合相变材料通过相变吸热使热量均匀分散,显著改善电池组的温度均匀性;在低温应用场景中,导电复合相变材料利用电热转换机制实现快速自加热,缓解低温对电池性能的限制;针对热失控风险,阻燃水合盐复合相变材料结合相变吸热与热分解吸热双重机制,有效抑制热量蔓延。本文综述了复合相变材料在电池冷却、加热及热失控防护中的应用策略,剖析了材料储热性能与热导率平衡对热管理效果的影响,并探讨了柔性、阻燃改性与化学储热机制的技术进展。当前研究需进一步提高材料的稳定性、经济性和工业化可行性,未来应重点发展多功能复合设计、智能响应技术以及规模化应用,以推动复合相变材料在动力电池热管理和热失控防护中的实际应用。

关键词: 锂离子电池, 热管理, 热失控, 相变材料, 复合材料

Abstract:

The performance and safety of lithium-ion batteries are highly affected by temperature fluctuations. At low temperatures, battery capacity decreases significantly and charging efficiency drops, while high-temperature operations accelerate performance degradation and risk initiating thermal runaway. Composite phase change materials have emerged as an effective solution battery thermal management owing to their capability for efficient thermal storage and temperature regulation across a wide range of conditions. For cooling applications, composite phase change materials with high enthalpy, high thermal conductivity, and flexibility improve the temperature uniformity of battery packs by absorbing excess heat through phase transitions and distributing it evenly across the battery system. Under low-temperature conditions, conductive composite phase change materials enable rapid self-heating through the electrothermal conversion mechanism, effectively mitigating the performance challenges faced by batteries in cold environments. To mitigate the risk of thermal runaway, flame-retardant hydrated salt composite phase change materials effectively suppress heat spread by combining both phase change heat absorption and thermal decomposition heat absorption. This review discusses the use of composite phase change materials in battery cooling, heating, and thermal runaway protection. It also explores how the balance between heat storage capacity and thermal conductivity affects the efficiency of thermal management systems. Furthermore, recent advancements are discussed, including improvements in flexibility, flame-retardant modifications, and chemical-based thermal storage mechanisms. Despite progress, challenges remain in improving the stability, cost-efficiency, and scalability of these materials. Future research should prioritize the development of multifunctional composite designs, intelligent responsive technologies, and large-scale methods to advance the practical use of composite phase change materials in thermal management and thermal runaway protection of power batteries.

Key words: lithium-ion battery, thermal management, thermal runaway, phase-change materials, composites

中图分类号: