储能科学与技术 ›› 2025, Vol. 14 ›› Issue (3): 1054-1069.doi: 10.19799/j.cnki.2095-4239.2024.0942
李欣燃1,2(), 张雪辉1,2(
), 周鑫1,3, 郭丁彰1, 陈吉祥1,2, 谢宇超1,2, 陈海生1,2,3,4(
)
收稿日期:
2024-10-08
修回日期:
2024-11-22
出版日期:
2025-03-28
发布日期:
2025-04-28
通讯作者:
张雪辉,陈海生
E-mail:lixinran@iet.cn;zhangxuehui@iet.cn;chen_hs@iet.cn
作者简介:
李欣燃(1999—),女,硕士,研究方向为压缩空气储能系统压缩机进气过滤系统,E-mail:lixinran@iet.cn;
基金资助:
Xinran LI1,2(), Xuehui ZHANG1,2(
), Xin ZHOU1,3, Dingzhang GUO1, Jixiang CHEN1,2, Yuchao XIE1,2, Haisheng CHEN1,2,3,4(
)
Received:
2024-10-08
Revised:
2024-11-22
Online:
2025-03-28
Published:
2025-04-28
Contact:
Xuehui ZHANG, Haisheng CHEN
E-mail:lixinran@iet.cn;zhangxuehui@iet.cn;chen_hs@iet.cn
摘要:
压缩空气储能被认为是最有发展前景的大规模储能技术之一,压缩机作为压缩空气储能系统的关键部件,对系统的整体性能有重要影响。压缩机进气过滤系统是压缩机的重要部件,过滤器作为其核心元件,可以有效避免空气中固体颗粒、液体水和油污等杂质对压缩机的安全稳定运行造成不良影响,获得了国内外学者的广泛关注。压缩机进气过滤系统的研究虽然取得了一定的进展,但是相关领域的文献综述方面却显得相对匮乏。本文通过归纳国内外学者对压缩机进气过滤系统的研究,依照过滤原理进行分类,总结了机械过滤、吸附过滤、静电过滤原理的研究进展,并归纳了过滤器的过滤性能评价指标以及优化方法,通过分析发现:相比于吸附式过滤器,机械式和静电式应用更广泛,具有过滤效率高、压降小等优势;进气过滤系统评价指标主要有过滤效率、压降、容尘量和抗湿性,滤材种类、过滤器结构和工况会影响过滤性能,且过滤性能之间会互相影响;通过采用过滤性能更好的纳米纤维复合滤材、优化滤芯和流道结构,可以对进气过滤系统进行优化。
中图分类号:
李欣燃, 张雪辉, 周鑫, 郭丁彰, 陈吉祥, 谢宇超, 陈海生. 压缩机进气过滤系统研究进展[J]. 储能科学与技术, 2025, 14(3): 1054-1069.
Xinran LI, Xuehui ZHANG, Xin ZHOU, Dingzhang GUO, Jixiang CHEN, Yuchao XIE, Haisheng CHEN. Research progress on intake filtration system of compressor[J]. Energy Storage Science and Technology, 2025, 14(3): 1054-1069.
1 | 陈海生, 刘金超, 郭欢, 等. 压缩空气储能技术原理[J]. 储能科学与技术, 2013, 2(2): 146-151. DOI: 10.3969/j.issn.2095-4239.2013. 02.008. |
CHEN H S, LIU J C, GUO H, et al. Technical principle of compressed air energy storage system[J]. Energy Storage Science and Technology, 2013, 2(2): 146-151. DOI: 10.3969/j.issn.2095-4239.2013.02.008. | |
2 | 陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展[J]. 储能科学与技术, 2022, 11(3): 1052-1076. DOI: 10.19799/j.cnki.2095-4239.2022.0105. |
CHEN H S, LI H, MA W T, et al. Research progress of energy storage technology in China in 2021[J]. Energy Storage Science and Technology, 2022, 11(3): 1052-1076. DOI: 10.19799/j.cnki. 2095-4239.2022.0105. | |
3 | 张家俊, 李晓琼, 张振涛, 等. 压缩二氧化碳储能系统研究进展[J]. 储能科学与技术, 2023, 12(6): 1928-1945. DOI: 10.19799/j.cnki.2095-4239.2023.0005. |
ZHANG J J, LI X Q, ZHANG Z T, et al. Research progress of compressed carbon dioxide energy storage system[J]. Energy Storage Science and Technology, 2023, 12(6): 1928-1945. DOI: 10.19799/j.cnki.2095-4239.2023.0005. | |
4 | 刘小明. 储能装置用空气压缩机的设计点选择[J]. 今日制造与升级, 2022(11): 146-148. |
LIU X M. Selection of design point of air compressor for energy storage device[J]. Manufacture & Upgrading Today, 2022(11): 146-148. | |
5 | 陆晓玲. 气流含湿对燃机过滤滤材及滤芯性能影响的研究[D]. 北京: 中国石油大学(北京), 2019. |
6 | 骆桂英, 俞立凡. 燃气轮机进气过滤系统的运行[J]. 发电设备, 2008, 22(5): 398-403. |
LUO G Y, YU L F. Operation of gas turbine inlet air filtration systems[J]. Power Equipment, 2008, 22(5): 398-403. | |
7 | ORIHUELA M P, CHACARTEGUI R, GÓMEZ-MARTÍN A, et al. Performance trends in wall-flow diesel particulate filters: Comparative analysis of their filtration efficiency and pressure drop[J]. Journal of Cleaner Production, 2020, 260: 120863. DOI: 10.1016/j.jclepro.2020.120863. |
8 | «空气洁净技术原理»(第3版)[J]. 暖通空调, 2003, 33(5): 43. |
Principles of air cleaning technology (3rd edition)[J]. Hv & Ac, 2003, 33(5): 43. | |
9 | WILCOX M, BALDWIN R, GARCIAHERNANDEZ A, et al. Guideline for gas turbine inlet air filtration systems [J]. Gas Machinery Research Council,2010.https://www.Gmrc.Org/Documents/Guidelineforgasturbineinletairfiltrationsystems.Pdf |
10 | BROWN R C. Theory of airflow through filters modelled as arrays of parallel fibres[J]. Chemical Engineering Science, 1993, 48(20): 3535-3543. DOI: 10.1016/0009-2509(93)85009-E. |
11 | HAN S, KIM J, KO S H. Advances in air filtration technologies: Structure-based and interaction-based approaches[J]. Materials Today Advances, 2021, 9: 100134. DOI: 10.1016/j.mtadv.2021. 100134. |
12 | HINDS W C, ZHU Y F. Aerosol technology: Properties, behavior, and measurement of airborne particles[M]. 3rd ed. DOI:10.1016/S0021-8502(99)00571-6, 1982. |
13 | Studies on fibrous aerosol filters—IV calculation of aerosol deposition in model filters in the range of maximum penetration[J]. The Annals of Occupational Hygiene, 1969: DOI: 10.1093/annhyg/12.1.1 |
14 | 刘道清. 空气过滤技术研究综述[J]. 环境科学与管理, 2007, 32(5): 109-113. DOI: 10.3969/j.issn.1673-1212.2007.05.030. |
LIU D Q. Overview on research and development of air filtration technology[J]. Environmental Science and Management, 2007, 32(5): 109-113. DOI: 10.3969/j.issn.1673-1212.2007.05.030. | |
15 | LEE K W, LIU B Y H. Theoretical study of aerosol filtration by fibrous filters[J]. Aerosol Science and Technology, 1982, 1(2): 147-161. DOI: 10.1080/02786828208958584. |
16 | LONG J, TANG M, SUN Z X, et al. Dust loading performance of a novel submicro-fiber composite filter medium for engine[J]. Materials, 2018, 11(10): 2038. DOI: 10.3390/ma11102038. |
17 | LAUCKS M L. Aerosol technology properties, behavior, and measurement of airborne particles[J]. Journal of Aerosol Science, 2000, 31(9): 1121-1122. DOI: 10.1016/s0021-8502(99)00571-6. |
18 | BAO B C, HE W L, ZHAO H, et al. Modeling penetration through fibrous filter during dynamic filtration[J]. Aerosol and Air Quality Research, 2015, 15(2): 648-656. DOI: 10.4209/aaqr.2014.04. 0081. |
19 | SAMBAER W, ZATLOUKAL M, KIMMER D. 3D modeling of filtration process via polyurethane nanofiber based nonwoven filters prepared by electrospinning process[J]. Chemical Engineering Science, 2011, 66(4): 613-623. DOI: 10.1016/j.ces. 2010.10.035. |
20 | SAMBAER W, ZATLOUKAL M, KIMMER D. 3D air filtration modeling for nanofiber based filters in the ultrafine particle size range[J]. Chemical Engineering Science, 2012, 82: 299-311. DOI: 10.1016/j.ces.2012.07.031. |
21 | 刘文华. 空气净化技术及其应用的对比分析[J]. 洁净与空调技术, 2022(1): 25-29. |
LIU W H. Analysis of air cleaning technologies and application[J]. Contamination Control & Air-Conditioning Technology, 2022(1): 25-29. | |
22 | 杜泽静, 张丽, 宋晓梅, 等. 多孔二醋酸纤维的制备及其对烟气的吸附性能[J]. 丝绸, 2020, 57(12): 21-25. DOI: 10.3969/j.issn.1001-7003.2020.12.004. |
DU Z J, ZHANG L, SONG X M, et al. Preparation of porous diacetate fiber and its adsorption performance for smoke[J]. Journal of Silk, 2020, 57(12): 21-25. DOI: 10.3969/j.issn.1001-7003.2020.12.004. | |
23 | 王海涛. 静电纺PU/ZIF-8复合膜的制备及其过滤吸附性能表征[D]. 上海: 东华大学, 2021. |
24 | WANG C S. Electrostatic forces in fibrous filters—A review[J]. Powder Technology, 2001, 118(1/2): 166-170. DOI: 10.1016/S0032-5910(01)00307-2. |
25 | PICH J, EMI H, KANAOKA C. Coulombic deposition mechanism in electret filters[J]. Journal of Aerosol Science, 1987, 18(1): 29-35. DOI: 10.1016/0021-8502(87)90006-1. |
26 | KANAOKA C. Fine particle filtration technology using fiber as dust collection medium[J]. KONA Powder and Particle Journal, 2019, 36: 88-113. DOI: 10.14356/kona.2019006. |
27 | THAKUR R, DAS D, DAS A. Electret air filters[J]. Separation & Purification Reviews, 2013, 42(2): 87-129. DOI: 10.1080/15422119. 2012.681094. |
28 | MELLOUKI H, HEROUS L, PRAWATYA Y, et al. Tribo and corona charging and charge decay on polymers plates[C]//2017 5th International Conference on Electrical Engineering-Boumerdes (ICEE-B). October 29-31, 2017, Boumerdes, Algeria. IEEE, 2017: 1-5. DOI: 10.1109/ICEE-B.2017.8192161. |
29 | 杨云飞. 燃气轮机进气高效过滤器性能评价实验研究[D]. 北京: 中国石油大学(北京), 2019. |
30 | IGIE U, PILIDIS P, FOUFLIAS D, et al. Industrial gas turbine performance: Compressor fouling and on-line washing[J]. Journal of Turbomachinery, 2014, 136(10): 101001. DOI: 10.1115/1.4027747. |
31 | HANACHI H, MECHEFSKE C, LIU J, et al. Enhancement of prognostic models for short-term degradation of gas turbines[C]//2017 IEEE International Conference on Prognostics and Health Management (ICPHM). June 19-21, 2017, Dallas, TX, USA. IEEE, 2017: 66-69. DOI: 10.1109/ICPHM.2017.7998307. |
32 | ROUMELIOTIS I, ARETAKIS N, ALEXIOU A. Industrial gas turbine health and performance assessment with field data[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(5): 051202. DOI: 10.1115/1.4034986. |
33 | STALDER J, SIRE J. Salt percolation through gas turbine air filtration systems and its contribution to total contaminant level[C]// 2001 International Joint Power Generation Conference (IJPGC 2001) . |
34 | SUTHERLAND K. Air filtration in industry: Gas turbine intake air filtration[J]. Filtration & Separation, 2008, 45(1): 20-23. DOI: 10.1016/S0015-1882(08)70025-9. |
35 | MEHER-HOMJI C B, CHAKER M, BROMLEY A F. The fouling of axial flow compressors: Causes, effects, susceptibility, and sensitivity[C]//ASME Turbo Expo 2009: Power for Land, Sea, and Air, June 8-12, 2009, Orlando, Florida, USA. 2010: 571-590. DOI: 10.1115/GT2009-59239. |
36 | VEER T, HAGLEROD K K, BOLLAND O. Measured data correction for improved fouling and degradation analysis of offshore gas turbines[C]//ASME Turbo Expo 2004: Power for Land, Sea, and Air, June 14-17, 2004, Vienna, Austria. 2008: 823-830. DOI: 10.1115/GT2004-53760. |
37 | Particulate Air Filters for General Ventilation-Determination of the Filter Performance[S]. Brussels, Belgium: European Committee for Standardization, 2012: |
38 | Air Filters for General Ventilation-Part 1: Technical specifications, requirement and classification system based upon particulate matter efficiency [S]. Switzerland: ISO Copyright Office, 2016. |
39 | 国家市场监督管理总局, 国家标准化管理委员会. 空气过滤器: GB/T 14295—2019[S]. 北京: 中国标准出版社, 2019. |
Standardization Administration of the People's Republic of China. Air filter: GB/T 14295—2019[S]. Beijing: Standards Press of China, 2019. | |
40 | HINER S D. Strategy for selecting optimised technologies for gas turbine air inlet filtration systems[C]//ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, June 6-10, 2011, Vancouver, British Columbia, Canada. 2012: 559-568. DOI: 10.1115/GT2011-45225. |
41 | 刘婷. 空气过滤器过滤细颗粒物的性能研究[D]. 北京: 华北电力大学, 2015. |
42 | LI W, SHEN S N, LI H. Study and optimization of the filtration performance of multi-fiber filter[J]. Advanced Powder Technology, 2016, 27(2): 638-645. DOI: 10.1016/j.apt.2016.02.018. |
43 | 付海明, 张鹏峰, 亢燕铭. 空气过滤捕集效率影响因素分析及多元关联式的确定[J]. 洁净与空调技术, 2006(2): 25-28. DOI: 10.3969/j.issn.1005-3298.2006.02.007. |
FU H M, ZHANG P F, KENG Y M. Analyses and definitions of calculating collecting efficiency of filers[J]. Contamination Control & Air-Conditioning Technology, 2006(2): 25-28. DOI: 10.3969/j.issn.1005-3298.2006.02.007. | |
44 | LIU C, HSU P C, LEE H W, et al. Transparent air filter for high-efficiency PM2.5 capture[J]. Nature Communications, 2015, 6: 6205. DOI: 10.1038/ncomms7205. |
45 | MADDINENI A K, DAS D, DAMODARAN R M. Air-borne particle capture by fibrous filter media under collision effect: A CFD-based approach[J]. Separation and Purification Technology, 2018, 193: 1-10. DOI: 10.1016/j.seppur.2017.10.065. |
46 | BULEJKO P. Numerical comparison of prediction models for aerosol filtration efficiency applied on a hollow-fiber membrane pore structure[J]. Nanomaterials, 2018, 8(6): 447. DOI: 10.3390/nano8060447. |
47 | 金云峰, 刘超, 邓高峰, 等. 燃气轮机进气压差建模方法研究[J]. 发电技术, 2021, 42(4): 395-403. DOI: 10.12096/j.2096-4528.pgt.21043. |
JIN Y F, LIU C, DENG G F, et al. Research on modeling method of gas turbine inlet pressure loss[J]. Power Generation Technology, 2021, 42(4): 395-403. DOI: 10.12096/j.2096-4528.pgt.21043. | |
48 | BREKKE O, BAKKEN L E, SYVERUD E. Filtration of gas turbine intake air in offshore installations: The gap between test standards and actual operating conditions[C]//ASME Turbo Expo 2009: Power for Land, Sea, and Air, June 8–12, 2009, Orlando, Florida, USA. 2010: 371-379. DOI: 10.1115/GT2009-59202. |
49 | CHEBERIACHKO S, YAVORSKA O, CHEBERIACHKO Y, et al. Analysis of pressure difference changes in respirator filters while dusting[J]. E3S Web of Conferences, 2018, 60: 00012. DOI: 10. 1051/e3sconf/20186000012. |
50 | SHAN B Y, GANG H J, XIN T. Research on optimization of replacement cycle of gas turbine multi-stage inlet filter[C]//2021 The 8th International Conference on Industrial Engineering and Applications(Europe). Barcelona Spain. ACM, 2021: 32-36. DOI: 10.1145/3463858.3463894. |
51 | FOTOVATI S, VAHEDI TAFRESHI H, POURDEYHIMI B. Influence of fiber orientation distribution on performance of aerosol filtration media[J]. Chemical Engineering Science, 2010, 65(18): 5285-5293. DOI: 10.1016/j.ces.2010.06.032. |
52 | FOTOVATI S, HOSSEINI S A, VAHEDI TAFRESHI H, et al. Modeling instantaneous pressure drop of pleated thin filter media during dust loading[J]. Chemical Engineering Science, 2011, 66(18): 4036-4046. DOI: 10.1016/j.ces.2011.05.038. |
53 | 王忠义, 李飞, 裴小萌, 等. 不同滤清装置布置形式下进气系统气动性能研究[J]. 船舶工程, 2013, 35(5): 31-35. DOI: 10.13788/j.cnki.cbgc.2013.05.018. |
WANG Z Y, LI F, PEI X M, et al. Research on aerodynamic performance of intake system under different layout forms of inlet air filtration device[J]. Ship Engineering, 2013, 35(5): 31-35. DOI: 10.13788/j.cnki.cbgc.2013.05.018. | |
54 | JOUBERT A, LABORDE J C, BOUILLOUX L, et al. Modelling the pressure drop across HEPA filters during cake filtration in the presence of humidity[J]. Chemical Engineering Journal, 2011, 166(2): 616-623. DOI: 10.1016/j.cej.2010.11.033. |
55 | 王瑞. 滤袋式过滤器过流压降变化规律研究[D]. 大庆: 东北石油大学, 2017. |
56 | ZHANG T, LIU Z T, HAO H L, et al. Application research of intake-air cooling technologies in gas-steam combined cycle power plants in China[J]. Journal of Power and Energy Engineering, 2014, 2(4): 304-311. DOI: 10.4236/jpee.2014.24042. |
57 | 马启新, 刘艳明, 潘涛, 等. 船舶燃气轮机进气系统中过滤装置数值模型化处理方法研究[J]. 推进技术, 2020, 41(11): 2475-2482. DOI: 10.13675/j.cnki.tjjs.200298. |
MA Q X, LIU Y M, PAN T, et al. Investigation on numerical modeling treatment method of filtration device in marine gas turbine intake system[J]. Journal of Propulsion Technology, 2020, 41(11): 2475-2482. DOI: 10.13675/j.cnki.tjjs.200298. | |
58 | 李瑭珺, 田杰, 韩刚, 等. 9E燃气轮机进气系统流动损失分析[J]. 热力透平, 2011, 40(3): 177-179, 224. DOI: 10.13707/j.cnki.31-1922/th.2011.03.005. |
LI T J, TIAN J, HAN G, et al. Flow loss of inlet system for 9E gas turbines[J]. Thermal Turbine, 2011, 40(3): 177-179, 224. DOI: 10.13707/j.cnki.31-1922/th.2011.03.005. | |
59 | 傅笑珊, 侯力, 游云霞. 燃气轮机进气系统流场分析[J]. 机械设计与制造, 2016(1): 1-4. DOI: 10.19356/j.cnki.1001-3997.2016.01.001. |
FU X S, HOU L, YOU Y X. Flow field analysis for a gas turbine inlet system[J]. Machinery Design & Manufacture, 2016(1): 1-4. DOI: 10.19356/j.cnki.1001-3997.2016.01.001. | |
60 | VELALI E, DIPPEL J, STUTE B, et al. Model-based performance analysis of pleated filters with non-woven layers[J]. Separation and Purification Technology, 2020, 250: 117006. DOI: 10.1016/j.seppur.2020.117006. |
61 | EKER O F, CAMCI F, JENNIONS I K. Physics-based prognostic modelling of filter clogging phenomena[J]. Mechanical Systems and Signal Processing, 2016, 75: 395-412. DOI: 10.1016/j.ymssp.2015.12.011. |
62 | ABDUL-WAHAB S A, OMER A S M, YETILMEZSOY K, et al. Modelling the clogging of gas turbine filter houses in heavy-duty power generation systems[J]. Mathematical and Computer Modelling of Dynamical Systems, 2020, 26(2): 119-143. DOI: 10. 1080/13873954.2020.1713821. |
63 | ZHAO X L, WANG S, YIN X, et al. Slip-effect functional air filter for efficient purification of PM2.5[J]. Scientific Reports, 2016, 6: 35472. DOI: 10.1038/srep35472. |
64 | 张越. 高效空气过滤器的流场一致性研究[D]. 上海: 东华大学, 2013. |
65 | CHAMBERS F W, AL-SARKHI A, YAO S H. Velocity distribution effects in air filter testing[J]. Particulate Science and Technology, 2001, 19(1): 1-21. DOI: 10.1080/02726350109709744. |
66 | 查文娟. 基于CFD褶式滤芯过滤性能的响应面法优化研究[D]. 马鞍山: 安徽工业大学, 2014. |
67 | 征建生, 蔡其波, 张再峰. 燃气轮机进气系统过滤结构数值模拟[J]. 船舶工程, 2019, 41(12): 78-82. DOI: 10.13788/j.cnki.cbgc.2019. 12.13. |
ZHENG J S, CAI Q B, ZHANG Z F. Numerical simulation on filtration structures of gas turbine inlet system[J]. Ship Engineering, 2019, 41(12): 78-82. DOI: 10.13788/j.cnki.cbgc. 2019.12.13. | |
68 | 谈锋, 周少伟, 华志刚. 进气道气流折转角度对压气机进口流场均匀性影响[J]. 船舶工程, 2011, 33(S2): 86-89. DOI: 10.13788/j.cnki.cbgc.2011.s2.042. |
TAN F, ZHOU S W, HUA Z G. Study on the influences of airflow turning angle on the flow field uniformity of compressor imports[J]. Ship Engineering, 2011, 33(S2): 86-89. DOI: 10.13788/j.cnki.cbgc.2011.s2.042. | |
69 | LEE K S, HASOLLI N, LEE J R, et al. Dust loading performance of a non-electret HVAC filter module in the presence of an external electric field[J]. Separation and Purification Technology, 2020, 250: 117204. DOI: 10.1016/j.seppur.2020.117204. |
70 | BULEJKO P, KRIŠTOF O, SVĚRÁK T. Experimental and modeling study on fouling of hollow-fiber membranes by fine dust aerosol particles[J]. Journal of Membrane Science, 2020, 616: 118562. DOI: 10.1016/j.memsci.2020.118562. |
71 | SHI B, YU X Y, PU Y, et al. A theoretical study on the filtration efficiency and dust holding performance of pleated air filters[J]. Heliyon, 2023, 9(7): e17944. DOI: 10.1016/j.heliyon.2023.e17944. |
72 | XIA T L, CHEN C. Toward understanding the evolution of incense particles on nanofiber filter media: Its influence on PM2.5 removal efficiency and pressure drop[J]. Building and Environment, 2020, 172: 106725. DOI: 10.1016/j.buildenv.2020.106725. |
73 | BOURROUS S, BOUILLOUX L, OUF F X, et al. Measurement and modeling of pressure drop of HEPA filters clogged with ultrafine particles[J]. Powder Technology, 2016, 289: 109-117. DOI: 10.1016/j.powtec.2015.11.020. |
74 | YOUSEFI S H, VAHEDI TAFRESHI H. Novel approach to model microstructure of dust-deposits comprised of polydisperse particles of arbitrary shapes[J]. Separation and Purification Technology, 2020, 244: 116844. DOI: 10.1016/j.seppur.2020. 116844. |
75 | NOVICK V J, MONSON P R, ELLISON P E. The effect of solid particle mass loading on the pressure drop of HEPA filters[J]. Journal of Aerosol Science, 1992, 23(6): 657-665. DOI: 10.1016/0021-8502(92)90032-Q. |
76 | LI Q, WANG Z C, SHAO S Q, et al. Experimental study on the synthetic dust loading characteristics of air filters[J]. Separation and Purification Technology, 2022, 284: 120209. DOI: 10.1016/j.seppur.2021.120209. |
77 | 何维浪, 林忠平, 张晓磊, 等. 褶型筒式过滤器阻力性能研究[J]. 洁净与空调技术, 2012(3): 23-27. DOI: 10.3969/j.issn.1005-3298. 2012.03.007. |
HE W L, LIN Z P, ZHANG X L, et al. Research on pressure drop performance of pleated cartridge filters[J]. Contamination Control & Air-Conditioning Technology, 2012(3): 23-27. DOI: 10.3969/j.issn.1005-3298.2012.03.007. | |
78 | 张涛, 刘志坦, 付忠广, 等. 燃气轮机进气系统湿堵分析及对策[J]. 中国电力, 2018, 51(12): 29-35. DOI: 10.11930/j.issn.1004-9649. 201809095. |
ZHANG T, LIU Z T, FU Z G, et al. Study on the mechanism of wet-clogging issue in gas turbine inlet air system and correction schemes[J]. Electric Power, 2018, 51(12): 29-35. DOI: 10.11930/j.issn.1004-9649.201809095. | |
79 | 李超, 石俊锋, 杨云飞, 等. 燃气轮机进气系统空气滤芯的抗湿性能分析[J]. 油气储运, 2021, 40(9): 1056-1062. |
LI C, SHI J F, YANG Y F, et al. Analysis on moisture resistance of air filter element in gas turbine inlet system[J]. Oil & Gas Storage and Transportation, 2021, 40(9): 1056-1062. | |
80 | WILCOX M, POERNER N, KURZ R, et al. Development of test procedure for quantifying the effects of salt and water on gas turbine inlet filtration[C]//ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, June 11–15, 2012, Copenhagen, Denmark. 2013: 1013-1023. DOI: 10.1115/GT2012-69847. |
81 | 张涛, 付忠广, 刘志坦, 等. 燃气轮机进气过滤器性能及测试评价方法[J]. 汽轮机技术, 2020, 62(6): 401-405, 433. |
ZHANG T, FU Z G, LIU Z T, et al. The study on the performances and testing methods of gas turbine air filter[J]. Turbine Technology, 2020, 62(6): 401-405, 433. | |
82 | BREKKE O, BAKKEN L E. Performance deterioration of intake air filters for gas turbines in offshore installations[C]//Volume 5: Industrial and Cogeneration; Microturbines and Small Turbomachinery; Oil and Gas Applications; Wind Turbine Technology. June 14-18, 2010. Glasgow, UK. ASMEDC, 2010: 685-694. DOI: 10.1115/gt2010-22454. |
83 | SCHIRMEISTER U, MOHR F. Impact of enhanced GT air filtration on power output and compressor efficiency degradation[C]//Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems. June 13-17, 2016. Seoul, South Korea. American Society of Mechanical Engineers, 2016: V003T08A003. DOI: 10.1115/gt2016-56292. |
84 | NIU Z L, BIAN Y, XIA T L, et al. An optimization approach for fabricating electrospun nanofiber air filters with minimized pressure drop for indoor PM2.5 control[J]. Building and Environment, 2021, 188: 107449. DOI: 10.1016/j.buildenv.2020. 107449. |
85 | SONG C B, PARK H S, LEE K W. Experimental study of filter clogging with monodisperse PSL particles[J]. Powder Technology, 2006, 163(3): 152-159. DOI: 10.1016/j.powtec.2006. 01.016. |
86 | XIA T L, CHEN C. Evolution of pressure drop across electrospun nanofiber filters clogged by solid particles and its influence on indoor particulate air pollution control[J]. Journal of Hazardous Materials, 2021, 402: 123479. DOI: 10.1016/j.jhazmat.2020. 123479. |
87 | 刘雅熙. 超细纤维复合空气过滤材料的结构和性能研究[D]. 广州: 华南理工大学, 2021. |
88 | ERIKSSON I, HAGLIND I, LIDBRANDT O, et al. Fiber swelling favoured by lignin softening[J]. Wood Science and Technology, 1991, 25(2): 135-144. DOI: 10.1007/BF00226813. |
89 | 蒙国慧, 贾耀芳, 符芳友, 等. 空气过滤用水刺非织造布的性能研究及应用[J]. 纺织导报, 2023(2): 59-61. DOI: 10.16481/j.cnki.ctl. 2023.02.018. |
MENG G H, JIA Y F, FU F Y, et al. Performance research and application of spunlaced nonwovens for air filtration[J]. China Textile Leader, 2023(2): 59-61. DOI: 10.16481/j.cnki.ctl.2023. 02.018. | |
90 | 殷平. 空气净化技术研究(1): 纤维过滤[J]. 暖通空调, 2024, 54(5): 13-24. DOI: 10.19991/j.hvac1971.2024.05.02. |
YIN P. Research on air purification technology(1): Fiber filtration[J]. Heating Ventilating & Air Conditioning, 2024, 54(5): 13-24. DOI: 10.19991/j.hvac1971.2024.05.02. | |
91 | 高华东, 肖春, 张殿印, 等. 细颗粒物净化滤料及应用[M]. 北京: 化学工业出版社, 2019. |
GAO H D, XIAO C, ZHANG D Y. Fine particulate matter purification filter material and its application[M]. Beijing: Chemical Industry Press, 2019. | |
92 | BAUER J F, MANVILLE J. Properties of glass fiber for filtration: Influence of forming process[J]. International Nonwovens Journal, 2004, os-13(4): 1558925004os-155891300401. DOI: 10.1177/1558925004os-1300401. |
93 | ZHANG X, LIU J J, LIU X, et al. HEPA filters for airliner cabins: State of the art and future development[J]. Indoor Air, 2022, 32(9): e13103. DOI: 10.1111/ina.13103. |
94 | 张诚, 胡志军, 王松凌, 等. 玻璃纤维空气滤纸的制备及性能[J]. 纸和造纸, 2014, 33(10): 49-52. DOI: 10.13472/j.ppm.2014.10.014. |
ZHANG C, HU Z J, WANG S L, et al. Preparation and properties of glass fiber air-filtration paper[J]. Paper and Paper Making, 2014, 33(10): 49-52. DOI: 10.13472/j.ppm.2014.10.014. | |
95 | 靳向煜, 吴海波, 黄健华. 熔喷/纺粘复合非织造布过滤材料的研究[J]. 中国纺织大学学报, 1992, 18(3): 9-17. |
JIN X Y, WU H B, HUANG J H. Melt blown/spunbonded composite of nonwovens filter materials[J]. Journal of Donghua University (Natural Science), 1992, 18(3): 9-17. | |
96 | 陈欣. 熔喷技术发展态势分析[J]. 科学观察, 2016, 11(3): 13-22. DOI: 10.15978/j.cnki.1673-5668.201603002. |
CHEN X. Patent analysis on meltblowing technology and meltblown nanofibers[J]. Science Focus, 2016, 11(3): 13-22. DOI: 10.15978/j.cnki.1673-5668.201603002. | |
97 | 韩旭, 惠岚峰. 复合滤纸的研究现状与进展[J]. 天津造纸, 2018, 40(2): 12-16, 25. DOI: 10.3969/j.issn.1674-5469.2018.02.002. |
HAN X, HUI L F. Research status and progress of composite filter paper[J]. Tianjin Paper Making, 2018, 40(2): 12-16, 25. DOI: 10.3969/j.issn.1674-5469.2018.02.002. | |
98 | 周川, 杨小兵, 颜晓珊, 等. 空气过滤用复合纳米纤维材料研究进展[J]. 功能材料, 2018, 49(5): 5056-5060, 5069. DOI: 10.3969/j.issn. 1001-9731.2018.05.010. |
ZHOU C, YANG X B, YAN X S, et al. Progress on the composite nanofiber materials used for air filtration[J]. Journal of Functional Materials, 2018, 49(5): 5056-5060, 5069. DOI: 10.3969/j.issn. 1001-9731.2018.05.010. | |
99 | 覃小红, 王善元. 静电纺丝纳米纤维的工艺原理、现状及应用前景[J]. 高科技纤维与应用, 2004, 29(2): 28-32. DOI: 10.3969/j.issn.1007-9815.2004.02.007. |
QIN X H, WANG S Y. Brief study on the processing theory, actuality and application of electrospun nanofibers[J]. Hi-tech Fiber & Application, 2004, 29(2): 28-32. DOI: 10.3969/j.issn.1007-9815.2004.02.007. | |
100 | CHO D, NAYDICH A, FREY M W, et al. Further improvement of air filtration efficiency of cellulose filters coated with nanofibers via inclusion of electrostatically active nanoparticles[J]. Polymer, 2013, 54(9): 2364-2372. DOI: 10.1016/j.polymer. 2013.02.034. |
101 | WAN H G, WANG N, YANG J M, et al. Hierarchically structured polysulfone/titania fibrous membranes with enhanced air filtration performance[J]. Journal of Colloid and Interface Science, 2014, 417: 18-26. DOI: 10.1016/j.jcis.2013.11.009. |
102 | WANG N, SI Y S, WANG N, et al. Multilevel structured polyacrylonitrile/silica nanofibrous membranes for high-performance air filtration[J]. Separation and Purification Technology, 2014, 126: 44-51. DOI: 10.1016/j.seppur.2014. 02.017. |
103 | 高峰. 纤维滤材过滤特性研究[D]. 天津: 天津大学, 2004. |
104 | BARHATE R S, RAMAKRISHNA S. Nanofibrous filtering media: Filtration problems and solutions from tiny materials[J]. Journal of Membrane Science, 2007, 296(1/2): 1-8. DOI: 10.1016/j.memsci.2007.03.038. |
105 | GOPAL R, KAUR S, MA Z W, et al. Electrospun nanofibrous filtration membrane[J]. Journal of Membrane Science, 2006, 281(1/2): 581-586. DOI: 10.1016/j.memsci.2006.04.026. |
106 | HUNG C H, LEUNG W W. Filtration of nano-aerosol using nanofiber filter under low Peclet number and transitional flow regime[J]. Separation and Purification Technology, 2011, 79(1): 34-42. DOI: 10.1016/j.seppur.2011.03.008. |
107 | MANICKAM S S, MCCUTCHEON J R. Model thin film composite membranes for forward osmosis: Demonstrating the inaccuracy of existing structural parameter models[J]. Journal of Membrane Science, 2015, 483: 70-74. DOI: 10.1016/j.memsci. 2015.01.017. |
108 | BIAN Y, WANG S J, ZHANG L, et al. Influence of fiber diameter, filter thickness, and packing density on PM2.5 removal efficiency of electrospun nanofiber air filters for indoor applications[J]. Building and Environment, 2020, 170: 106628. DOI: 10.1016/j.buildenv.2019.106628. |
109 | 刘彭. 基于FLUENT技术的折褶滤芯结构参数研究[J]. 过滤与分离, 2014, 24(3): 11-16. DOI: 10.3969/j.issn.1005-8265.2014. 03.003. |
LIU P. Study of pleated filter structure parameters based on FLUENT technology[J]. Journal of Filtration & Separation, 2014, 24(3): 11-16. DOI: 10.3969/j.issn.1005-8265.2014. 03.003. | |
110 | 于腾. 楔形通道初效空气过滤器结构参数与阻力关系的研究[D]. 天津: 天津商业大学, 2016. |
YU T. Study on the relationship between structural parameters and resistance of wedge-shaped channel primary air filter[D]. Tianjin: Tianjin University of Commerce, 2016. | |
111 | CHANG D Q, TIEN C Y, PENG C Y, et al. Development of composite filters with high efficiency, low pressure drop, and high holding capacity PM2.5 filtration[J]. Separation and Purification Technology, 2019, 212: 699-708. DOI: 10.1016/j.seppur.2018. 11.068. |
112 | CHEN S W, WANG Q, CHEN D R. Effect of pleat shape on reverse pulsed-jet cleaning of filter cartridges[J]. Powder Technology, 2017, 305: 1-11. DOI: 10.1016/j.powtec.2016. 09.013. |
113 | SAE-LIM W, TANTHAPANICHAKOON W, KANAOKA C. Correlation for the efficiency enhancement factor of a single electret fiber[J]. Journal of Aerosol Science, 2006, 37(2): 228-240. DOI: 10.1016/j.jaerosci.2005.05.001. |
114 | 袁惠新, 刘明爽, 吕浪, 等. 褶型筒式空气过滤器过滤压降的数值模拟[J]. 环境工程学报, 2017, 11(5): 2946-2950. DOI: 10.12030/j.cjee.201511171. |
YUAN H X, LIU M S, LYU L, et al. Numerical simulation of pressure drop of pleated air filter[J]. Chinese Journal of Environmental Engineering, 2017, 11(5): 2946-2950. DOI: 10. 12030/j.cjee.201511171. | |
115 | 付海明, 徐芳, 晋瑞芳. 褶型气溶胶过滤器过滤阻力与结构参数关系[J]. 华侨大学学报(自然科学版), 2010, 31(3): 307-312. DOI: 10.11830/issn.1000-5013.2010.03.0307. |
FU H M, XU F, JIN R F. Relationship of filtration resistance with geometry parameters across pleated aerosol filter[J]. Journal of Huaqiao University (Natural Science), 2010, 31(3): 307-312. DOI: 10.11830/issn.1000-5013.2010.03.0307. | |
116 | 刘彭. 折褶滤芯过滤阻力的数值模拟与分析[J]. 过滤与分离, 2017, 27(2): 14-19. |
LIU P. Numerical simulation and analysis on the filtration resistance of flexure filter element[J]. Journal of Filtration & Separation, 2017, 27(2): 14-19. | |
117 | ZHANG Q, WELCH J, PARK H, et al. Improvement in nanofiber filtration by multiple thin layers of nanofiber mats[J]. Journal of Aerosol Science, 2010, 41(2): 230-236. DOI: 10.1016/j.jaerosci. 2009.10.001. |
118 | LEUNG W W, HUNG C H, YUEN P T. Effect of face velocity, nanofiber packing density and thickness on filtration performance of filters with nanofibers coated on a substrate[J]. Separation and Purification Technology, 2010, 71(1): 30-37. DOI: 10.1016/j.seppur.2009.10.017. |
119 | ZHANG S C, TANG N, CAO L T, et al. Highly integrated polysulfone/polyacrylonitrile/polyamide-6 air filter for multilevel physical sieving airborne particles[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 29062-29072. DOI: 10.1021/acsami. 6b10094. |
120 | WANG L M, FAN Y L, LUO L G. Heuristic optimality criterion algorithm for shape design of fluid flow[J]. Journal of Computational Physics, 2010, 229(20): 8031-8044. DOI: 10. 1016/j.jcp.2010.07.006. |
121 | GUO K, LI Q, LIU B T, et al. A novel design method based on flow pattern construction for flow passage with low flow drag and pressure drop[J]. Chemical Engineering Science, 2015, 135: 89-99. DOI: 10.1016/j.ces.2015.06.034. |
122 | 袁长龙. 气垫船燃气轮机进气系统性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2013. |
123 | LI Z Y, SUN D K, DONG X, et al. A review on aero-engine inlet-compressor integration and inlet flow distortion in axial compressors[J]. Fundamental Research, 2024, DOI: 10.1016/j.fmre.2024.03.018. |
124 | 陈宗华, 谷传纲, 舒信伟. 基于CFD技术的离心压缩机径向进气室结构形状优化设计[J]. 机械工程学报, 2010, 46(14): 124-129. DOI: 10.3901/JME.2010.14.124. |
CHEN Z H, GU C G, SHU X W. Shape optimum design for centrifugal compressor radial inlet based on CFD technique[J]. Journal of Mechanical Engineering, 2010, 46(14): 124-129. DOI: 10.3901/JME.2010.14.124. | |
125 | CHEN F Q, LI X S, HU B, et al. Pressure drop analysis and aerodynamic design of compressor L-inlet duct[J]. Aerospace Science and Technology, 2020, 107: 106324. DOI: 10.1016/j.ast. 2020.106324. |
[1] | 张一凡, 刘杰, 李亚南, 郝佳豪, 越云凯, 杨俊玲, 张振涛. 叶轮式压缩机喘振问题研究进展[J]. 储能科学与技术, 2025, 14(1): 269-282. |
[2] | 王凯轩, 左志涛, 梁奇, 郭文宾, 陈海生. 离心式压缩机性能预测方法综述[J]. 储能科学与技术, 2023, 12(11): 3435-3444. |
[3] | 熊亚林, 许壮, 王雪颖, 高鹏博, 杨康. 我国加氢基础设施关键技术及发展趋势分析[J]. 储能科学与技术, 2022, 11(10): 3391-3400. |
[4] | 徐冉, 左志涛, 黎翱, 王霞, 陈明, 陈海生. 基于析湿系数法活塞压缩机级间变工况析水特性[J]. 储能科学与技术, 2021, 10(5): 1556-1564. |
[5] | 张丹, 左志涛, 周鑫, 郭文宾, 陈海生, 王星. 跨声速轴流压缩机动静叶弯参数耦合关系[J]. 储能科学与技术, 2021, 10(5): 1544-1555. |
[6] | 刘丽辉, 张航, 彭子安, 李杰, 孙小琴. 板式相变储能换热器的性能优化[J]. 储能科学与技术, 2021, 10(5): 1745-1752. |
[7] | 李正, 刘祯, 吴华伟, 谢东升, 钱伟. 涡旋压缩机切向泄漏瞬态流场特性[J]. 储能科学与技术, 2021, 10(5): 1579-1588. |
[8] | 李伟, 左志涛, 侯虎灿, 梁奇, 林志华, 陈海生. 基于遗传算法的离心压缩机蜗壳参数化及多目标优化[J]. 储能科学与技术, 2021, 10(3): 1071-1079. |
[9] | 张 阳1,左志涛2,梁 奇1,周 鑫2,陈海生2. 离心压缩机可调叶片扩压器优化设计与调节分析[J]. 储能科学与技术, 2017, 6(6): 1231-. |
[10] | 闫 雪1,2,左志涛1,梁 奇1,2,汤宏涛1,陈海生1. 带级间冷却的双级离心压缩机可调进口导叶联合调节分析[J]. 储能科学与技术, 2017, 6(1): 108-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||