储能科学与技术 ›› 2025, Vol. 14 ›› Issue (1): 269-282.doi: 10.19799/j.cnki.2095-4239.2024.0590
张一凡1,2,5(), 刘杰1, 李亚南2, 郝佳豪2,3, 越云凯2,4,5(
), 杨俊玲2,5, 张振涛2,4,5
收稿日期:
2024-06-28
修回日期:
2024-07-23
出版日期:
2025-01-28
发布日期:
2025-02-25
通讯作者:
越云凯
E-mail:17685470886@163.com;yueyunkai@mail.ipc.ac.cn
作者简介:
张一凡(1999—),男,硕士研究生,研究方向为二氧化碳储能技术、离心式压缩机防喘振技术,E-mail:17685470886@163.com;
基金资助:
Yifan ZHANG1,2,5(), Jie LIU1, Ya'nan LI2, Jiahao HAO2,3, Yunkai YUE2,4,5(
), Junling YANG2,5, Zhentao ZHANG2,4,5
Received:
2024-06-28
Revised:
2024-07-23
Online:
2025-01-28
Published:
2025-02-25
Contact:
Yunkai YUE
E-mail:17685470886@163.com;yueyunkai@mail.ipc.ac.cn
摘要:
在大型压缩气体储能系统中,叶轮式压缩机的性能是决定整个储能系统能否高效运行的关键。喘振只能被抑制,无法消除,是叶轮式压缩机的固有特性之一,严重影响了叶轮式压缩机的工作效率和安全稳定性。因此,防喘振技术是确保叶轮式压缩机安全稳定运行的关键,尤其在压缩气体储能系统中压缩机频繁启停的工况下更为重要。本文通过调研近年来国内外有关叶轮式压缩机防喘振技术的文献,阐述了叶轮式压缩机喘振产生的机理、判别方法以及喘振发生时的流场变化等物理特性;着重综述了通过限制压缩机入口流量防止喘振发生的被动控制、通过改变压缩机性能防止喘振的主动控制以及主动控制和被动控制相结合的主/被动控制3种控制策略的研究进展以及各自的优缺点;重点分析了基于信号分析与处理技术的压缩机喘振检测技术;展望了叶轮式压缩机防喘振技术未来的发展方向。综合分析表明,通过对叶轮式压缩机喘振物理特性的详细分析,设计出叶轮式压缩机防喘振控制策略,结合喘振检测技术,可以有效抑制压缩机喘振现象的发生。
中图分类号:
张一凡, 刘杰, 李亚南, 郝佳豪, 越云凯, 杨俊玲, 张振涛. 叶轮式压缩机喘振问题研究进展[J]. 储能科学与技术, 2025, 14(1): 269-282.
Yifan ZHANG, Jie LIU, Ya'nan LI, Jiahao HAO, Yunkai YUE, Junling YANG, Zhentao ZHANG. Research progress on surge analysis and anti-surge of turbo-compressor[J]. Energy Storage Science and Technology, 2025, 14(1): 269-282.
表1
防喘振控制类型表"
控制类型 | 控制特点 | 优缺点 |
---|---|---|
被动控制 | 通过限制压缩机入口最小流量,确保压缩机工作点运行在喘振线右侧安全区以防止喘振发生 | 设计和实现简单,可靠性高,响应时间短,成本低但控制精度低,反应滞后,缩小了压缩机运行范围,降低了压缩机效率 |
主动控制 | 通过改变压缩机自身性能,进而从压缩机内部对喘振现象进行抑制 | 控制能力精确,适应性强,能够集成先进技术和多变量控制,可以使压缩机的工作点越过原有喘振线,扩大了压缩机的运行范围,性能优化显著,但系统复杂性高,成本较高,维护要求高,实时性和计算要求高 |
主/被动控制 | 正常工况下采用主动控制进行防喘振控制,被动控制仅用于特殊或紧急情况 | 结合了主动控制与被动控制的优点,但只是割裂地使用二者,并没有实现二者真正的结合 |
1 | 张玮灵, 古含, 章超, 等. 压缩空气储能技术经济特点及发展趋势[J]. 储能科学与技术, 2023, 12(4): 1295-1301. DOI: 10.19799/j.cnki.2095-4239.2022.0645. |
ZHANG W L, GU H, ZHANG C, et al. Technical economic characteristics and development trends of compressed air energy storage[J]. Energy Storage Science and Technology, 2023, 12(4): 1295-1301. DOI: 10.19799/j.cnki.2095-4239.2022.0645. | |
2 | 郝佳豪, 越云凯, 张家俊, 等. 二氧化碳储能技术研究现状与发展前景[J]. 储能科学与技术, 2022, 11(10): 3285-3296. DOI: 10.19799/j.cnki.2095-4239.2022.0199. |
HAO J H, YUE Y K, ZHANG J J, et al. Research status and development prospect of carbon dioxide energy-storage technology[J]. Energy Storage Science and Technology, 2022, 11(10): 3285-3296. DOI: 10.19799/j.cnki.2095-4239.2022.0199. | |
3 | 刘石, 黄正, 胡亚轩, 等. 空压机喘振现象及防喘技术浅析[J]. 储能科学与技术, 2020, 9(S1): 70-77. |
LIU S, HUANG Z, HU Y X, et al. Brief analysis of air compressor surge phenomenon and anti-surge technology [J]. Energy Storage Science and Technology, 2020, 9(S1): 70-77 | |
4 | 祁大同. 离心式压缩机原理[M]. 北京: 机械工业出版社, 2018. |
QI D T. Principle of centrifugal compressor[M]. Beijing: China Machine Press, 2018. | |
5 | ALMASI A. Latest techniques and practical notes on anti-surge systems for centrifugal compressors[J]. Australian Journal of Mechanical Engineering, 2012, 10(1): 81-90. DOI: 10.7158/m11-779.2012.10.1. |
6 | GRAVDAHL J. Modeling and control of surge and rotating stall in compressors[J/OL].1998.[2021-05-03].https://api.semanticscholar.org/CorpusID:59731157 |
7 | 陈征. 离心式空气压缩机组防喘振控制系统的设计[D]. 沈阳: 东北大学, 2016. |
CHEN Z. Design of anti-surge control system for centrifugal air compressor units[D]. Shenyang: Northeastern University, 2016. | |
8 | XUE X, WANG T, ZHANG T T, et al. Mechanism of stall and surge in a centrifugal compressor with a variable vaned diffuser[J]. Chinese Journal of Aeronautics, 2018, 31(6): 1222-1231. DOI: 10.1016/j.cja.2018.04.003. |
9 | LAWLESS P B, FLEETER S. Active control of centrifugal compressor rotating stall[M]//ATASSI H M, ed. Unsteady Aerodynamics, Aeroacoustics, and Aeroelasticity of Turbomachines and Propellers. New York, NY: Springer New York, 1993: 397-414. DOI: 10.1007/978-1-4613-9341-2_20. |
10 | 徐黎明. 离心式压缩机喘振原因分析及防范措施[J]. 石化技术, 2014, 21(1): 40-43. DOI: 10.3969/j.issn.1006-0235.2014.01.011. |
XU L M. Analysis and solution for surge in centrifugal compressor[J]. Petrochemical Industry Technology, 2014, 21(1): 40-43. DOI: 10.3969/j.issn.1006-0235.2014.01.011. | |
11 | AMIN A A, MAQSOOD M T, MAHMOOD-UL-HASAN K. Surge protection of centrifugal compressors using advanced anti-surge control system[J]. Measurement and Control, 2021, 54(5/6): 967-982. DOI: 10.1177/0020294020983372. |
12 | 朱智富, 马超, 马朝臣, 等. 小流量下离心压气机流场分析及喘振机理研究[J]. 车用发动机, 2011(2): 37-41. DOI: 10.3969/j.issn.1001-2222.2011.02.009. |
ZHU Z F, MA C, MA C C, et al. Flow field analysis and surge mechanism discussion of centrifugal compressor in low flow[J]. Vehicle Engine, 2011(2): 37-41. DOI: 10.3969/j.issn.1001-2222.2011.02.009. | |
13 | 马超, 朱智富, 马朝臣, 等. 涡轮增压器离心压气机非稳态工况流场分析[J]. 应用力学学报, 2011, 28(1): 64-68, 111. |
MA C, ZHU Z F, MA C C, et al. Unsteady flow of the turbocharger centrifugal compressor[J]. Chinese Journal of Applied Mechanics, 2011, 28(1): 64-68, 111. | |
14 | 郑克扬, 葛国璜. 发动机喘振-爆燃故障的信号分析[J]. 航空动力学报, 1990, 5(3): 204-208, 283-284. DOI: 10.13224/j.cnki.jasp.1990.03.003. |
ZHENG K Y, GE G H. Signal analysis technique for surge-detonation of a turbojet engine[J]. Journal of Aerospace Power, 1990, 5(3): 204-208, 283-284. DOI: 10.13224/j.cnki.jasp. 1990.03.003. | |
15 | 郭强, 竺晓程, 杜朝辉, 等. 带气腔的离心压缩机旋转失速的三维数值模拟[J]. 航空动力学报, 2007, 22(7): 1167-1172. DOI: 10.13224/j.cnki.jasp.2007.07.024. |
GUO Q, ZHU X C, DU Z H, et al. Three-dimensional numerical simulation of rotating stall inside a centrifugal compressor with plenum model[J]. Journal of Aerospace Power, 2007, 22(7): 1167-1172. DOI: 10.13224/j.cnki.jasp.2007.07.024. | |
16 | 胡江峰, 欧阳华, 何磊, 等. 多级轴流压气机喘振特性分析[J]. 汽轮机技术, 2010, 52(4): 250-252. DOI: 10.3969/j.issn.1001-5884.2010.04.004. |
HU J F, OUYANG H, HE L, et al. Performance analysis of multistage axial compressor at surge conditions[J]. Turbine Technology, 2010, 52(4): 250-252. DOI: 10.3969/j.issn.1001-5884.2010.04.004. | |
17 | GREITZER E M. Surge and rotating stall in axial flow compressors: Part I: Theoretical compression system model[J]. Journal of Engineering for Power, 1976, 98(2): 190-198. DOI: 10.1115/1.3446138. |
18 | DAY TOWLER M, ALLISON T, KRUEGER P, et al. A novel approach to surge control: High-frequency pressure variance As an indicator of impending surge in centrifugal compressors[C]//ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, June 11–15, 2018, Oslo, Norway. 2018 DOI: 10.1115/GT2018-77222. |
19 | YOON J W, WILAILAK S, BAE J E, et al. Surge analysis in a centrifugal compressor using a dimensionless surge number[J]. Chemical Engineering Research and Design, 2020, 164: 240-247. DOI: 10.1016/j.cherd.2020.10.004. |
20 | 孙立臣, 席光, 武耀族. 高速离心式压气机喘振特性的实验与数值模拟研究[J]. 工程热物理学报, 2023, 44(6): 1519-1527. |
SUN L C, XI G, WU Y Z. Experimental and numerical simulation study on surge characteristics of high speed centrifugal compressor[J]. Journal of Engineering Thermophysics, 2023, 44(6): 1519-1527. | |
21 | 赵阳, 王志恒, 席光. 离心压缩机喘振动态特性的数值研究[J]. 工程热物理学报, 2019, 40(10): 2252-2258. |
ZHAO Y, WANG Z H, XI G. Numerical investigation of dynamic characteristic of surge in a centrifugal compressor[J]. Journal of Engineering Thermophysics, 2019, 40(10): 2252-2258. | |
22 | DEHNER R, SELAMET A, KELLER P, et al. Simulation of deep surge in a turbocharger compression system[J]. Journal of Turbomachinery, 2016, 138(11): 111002. DOI: 10.1115/1.4033260. |
23 | CREVEL F, GOURDAIN N, OTTAVY X. Numerical simulation of aerodynamic instabilities in a multistage high-speed high-pressure compressor on its test rig: Part II: Deep surge[J]. Journal of Turbomachinery, 2014, 136(10): 101004. DOI: 10.1115/1.4027968. |
24 | GRAPOW F, LIŚKIEWICZ G. Study of the greitzer model for centrifugal compressors: Variable lc parameter and two types of surge[J]. Energies, 2020, 13(22): 6072. DOI: 10.3390/en13226072. |
25 | EMMONS H W, PEARSON C E, GRANT H P. Compressor surge and stall propagation[J]. Journal of Fluids Engineering, 1955, 77(4): 455-467. DOI: 10.1115/1.4014389. |
26 | LANCHESTER F W. Aerodonetics: Constituting the Second Volume of a Complete Work on Aerial Flight[M]. Constable & Company Limited, 1910. |
27 | CHEN H Z, JIANG L. A new Anti-surge study based on Fuzzy self-adaptation PID controller[C]//2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery. August 10-12, 2010, Yantai, China. IEEE, 2010: 1147-1151. DOI: 10.1109/FSKD.2010.5569157. |
28 | 葛昕炜, 褚瑞华, 傅江东, 等. 离心式压缩机防喘振控制方法[J]. 流程工业, 2023(3): 40-43. |
GE X W, CHU R H, FU J D, et al. Anti-surge control method for centrifugal compressor[J]. Process, 2023(3): 40-43. | |
29 | 孙士赫. 压缩机组的防喘振控制[J]. 天津化工, 2023, 37(S1): 225-228. |
SUN S H. Anti-surge control of compressor unit[J]. Tianjin Chemical Industry, 2023, 37(S1): 225-228. | |
30 | 王春, 杨武华, 伍元刚, 等. 基于Logix5000的膨胀压缩机防喘振控制浅析[J]. 石化技术, 2024, 31(3): 66-68. |
WANG C, YANG W H, WU Y G, et al. Analysis of anti surge control for expansion compressor based on Logix5000[J]. Petrochemical Industry Technology, 2024, 31(3): 66-68. | |
31 | 单光胜, 任正云, 叶大山. 离心式压缩机防喘振控制算法设计[J]. 自动化技术与应用, 2023, 42(10): 15-19. DOI: 10.20033/j.1003-7241.(2023)10-0015-05. |
SHAN G S, REN Z Y, YE D S. Design of anti-surge control algorithm for centrifugal compressor[J]. Techniques of Automation and Applications, 2023, 42(10): 15-19. DOI: 10.20033/j.1003-7241.(2023)10-0015-05. | |
32 | YI Y N, SUN M G. Research and simulation of fuzzy expert anti-surge control system for compressor[J]. Frontiers in Computing and Intelligent Systems, 2024, 7(1): 1-5. DOI: 10.54097/d39w6055. |
33 | KARASAKAL O, ENGİN YEŞİ L, MÜJDE GÜ Z E L K A Y A, et al. Implementation of a new self-tuning fuzzy PID controller on PLC[J]. TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES, 2005, 13(2): 277-286. |
34 | HE H M, SUN X H. Application of anti surge technology of compressor based on fuzzy control[C]//2020 3rd International Conference on Electron Device and Mechanical Engineering (ICEDME). May 1-3, 2020, Suzhou, China. IEEE, 2020: 330-333. DOI: 10.1109/ICEDME50972.2020.00082. |
35 | WANG C X, SHAO C, HAN Y. Centrifugal compressor surge control using nonlinear model predictive control based on LS-SVM[C]//2010 3rd International Symposium on Systems and Control in Aeronautics and Astronautics. June 8-10, 2010, Harbin, China. IEEE, 2010: 466-471. DOI: 10.1109/ISSCAA. 2010.5633206. |
36 | HE S, XIE M Y, TONTIWACHWUTHIKUL P, et al. Self-adapting anti-surge intelligence control and numerical simulation of centrifugal compressors based on RBF neural network[J]. Energy Reports, 2022, 8: 2434-2447. DOI: 10.1016/j.egyr.2022.01.135. |
37 | DIVYA M N, K N C, GANGADHARIAH S L, et al. Design and performance analysis of anti-surge control mechanism for compressor system using neural networks[J]. International Journal of Advanced Computer Science and Applications, 2022, 13(1). DOI: 10.14569/ijacsa.2022.0130182. |
38 | JIANG K, XIANG Y, CHEN T Y, et al. Research on surge control of centrifugal compressor based on reinforcement learning[M]//BALL A, GELMAN L, RAO B K N, eds. Smart Innovation, Systems and Technologies. Cham: Springer International Publishing, 2020: 293-305. DOI: 10.1007/978-3-030-57745-2_25. |
39 | SALOMA K Z A S. Anti-surge control in centrifugal compressors using reinforcement learning[J/OL]. Biblioteche e Archivi, 2022[2024-05-03]. https://hdl.handle.net/10589/188922 |
40 | MOLANA N, KHODAPARAST P, FATEHI A, et al. Analysis and simulation of active surge control in centrifugal compressor based on multiple model controllers[J]. International Journal of Dynamics and Control, 2021, 9(2): 766-787. DOI: 10.1007/s40435-020-00681-4. |
41 | ARIBI Y, BOUSHAKI R Z. A novel approach for active surge control in multistage centrifugal compressor[J]. Wseas Transactions on Power Systems, 2023, 18: 1-10. DOI: 10.37394/232016.2023.18.1. |
42 | SHENG H L, CHEN Q, LI J C, et al. Robust adaptive backstepping active control of compressor surge based on wavelet neural network[J]. Aerospace Science and Technology, 2020, 106: 106139. DOI: 10.1016/j.ast.2020.106139. |
43 | 王小艳, 赵虹, 罗雄麟. 叶轮压缩系统喘振的主动控制[J]. 动力工程, 2006, 26(6): 808-813. DOI: 10.3321/j.issn: 1000-6761. 2006.06.010. |
WANG X Y, ZHAO H, LUO X L. Active surging control of turbo-compressor systems[J]. Journal of Power Engineering, 2006, 26(6): 808-813. DOI: 10.3321/j.issn: 1000-6761.2006.06.010. | |
44 | GUAN X D, ZHOU J, JIN C W, et al. Influence of different operating conditions on centrifugal compressor surge control with active magnetic bearings[J]. Engineering Applications of Computational Fluid Mechanics, 2019, 13(1): 824-832. DOI: 10.1080/19942060.2019.1639216. |
45 | MA W Y, FU Y Y, LI H B, et al. Surge disturbance suppression of active magnetic bearing suspended compressors based on disturbance observer[C]//2023 26th International Conference on Electrical Machines and Systems (ICEMS). November 5-8, 2023, Zhuhai, China. IEEE, 2023: 2475-2479. DOI: 10.1109/ICEMS59686.2023.10344428. |
46 | HAN X, LIU G, CHEN B D, et al. Surge disturbance suppression of AMB-rotor systems in magnetically suspension centrifugal compressors[J]. IEEE Transactions on Control Systems Technology, 2022, 30(4): 1550-1560. DOI: 10.1109/TCST. 2021. 3112765. |
47 | SMEULERS J P M, BOUMAN W J, ESSENssen H A V. Model predictive control of compressor installations[J/OL]. 1999. [2021-05-03].https://www.tno.nl/media/1545/model-predictive-control-of-compressor.pdf |
48 | JOHANSEN T A. On multi-parametric nonlinear programming and explicit nonlinear model predictive control[C]//Proceedings of the 41st IEEE Conference on Decision and Control. December 10-13, 2002, Las Vegas, NV, USA. IEEE, 2002: 2768-2773. DOI: 10.1109/CDC.2002.1184260. |
49 | GRANCHAROVA A, JOHANSEN T A, TØNDEL P. Computational aspects of approximate explicit nonlinear model predictive control[M]//FINDEISEN R, ALLGÖWER F, BIEGLER L T, eds. Lecture Notes in Control and Information Sciences. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007: 181-192. DOI: 10.1007/978-3-540-72699-9_14. |
50 | CORTINOVIS A, PARESCHI D, MERCANGOEZ M, et al. Model predictive anti-surge control of centrifugal compressors with variable-speed drives[J]. IFAC Proceedings Volumes, 2012, 45(8): 251-256. DOI: 10.3182/20120531-2-NO-4020.00052. |
51 | SHENG H L, CHEN Q, ZHANG J, et al. A high-safety active/passive hybrid control approach for compressor surge based on nonlinear model predictive control[J]. Chinese Journal of Aeronautics, 2023, 36(1): 396-412. DOI: 10.1016/j.cja. 2022.08.021. |
52 | ASADZADEH M A, SHABANI F. Centrifugal compressor active surge controller design based on fuzzy type II[C]//2018 IEEE Texas Power and Energy Conference (TPEC). February 8-9, 2018, College Station, TX, USA. IEEE, 2018: 1-6. DOI: 10.1109/TPEC.2018.8312079. |
53 | ZHANG M J, WU W X, ZHOU C. Numerical model of predicting surge boundaries in high-speed centrifugal compressors[J]. Aerospace Science and Technology, 2023, 141: 108518. DOI: 10.1016/j.ast.2023.108518. |
54 | 姜莉莉, 张晶. 压缩机喘振检测技术专利发展综述[J]. 制冷与空调, 2018, 18(7): 74-79. DOI: 10.3969/j.issn.1009-8402.2018.07.018. |
JIANG L L, ZHANG J. Analysis of patents of compressor surge detectial technology[J]. Refrigeration and Air-Conditioning, 2018, 18(7): 74-79. DOI: 10.3969/j.issn.1009-8402.2018.07.018. | |
55 | LOGAN A, CAVA D G, LIŚKIEWICZ G. Singular spectrum analysis as a tool for early detection of centrifugal compressor flow instability[J]. Measurement, 2021, 173: 108536. DOI: 10.1016/j.measurement.2020.108536. |
56 | KOZHUKHOV Y V, LEBEDEV A A, CHAI N M, et al. Automatic centrifugal compressor pre-surge detection[C]//AIP Conference Proceedings", "INTERNATIONAL CONFERENCE ON SCIENCE AND APPLIED SCIENCE (ICSAS2020). Surakarta, Indonesia. AIP Publishing, 2020: 030047. DOI: 10.1063/5.0026931. |
57 | LIU Y, LI Y C, HE H, et al. Multifractal analysis of flow instability of centrifugal compressor with dynamic pressure[J]. Alexandria Engineering Journal, 2023, 72: 181-193. DOI: 10.1016/j.aej. 2023.03.069. |
58 | ZANOLI S M, ASTOLFI G, MARCZYK J. Complexity-based methodology for Fault Diagnosis: Application on a centrifugal machine[J]. IFAC Proceedings Volumes, 2012, 45(12): 51-56. DOI: 10.3182/20120620-3-MX-3012.00060. |
59 | ZHONG L L, LIU Y, ZHAO J, et al. Deep predictive controller designed for centrifugal compressor system anti-surge[C]//2020 Chinese Automation Congress (CAC). November 6-8, 2020, Shanghai, China. IEEE, 2020: 6554-6559. DOI: 10.1109/CAC51589.2020.9327381. |
60 | 徐野, 黄文君, 米俊芃, 等. 多源信息融合的离心式压缩机喘振诊断方法[J]. 化工学报, 2023, 47(7): 2979-2987. DOI: 10.11949/0438-1157.20230454. |
XU Y, HUANG W J, MI J P, et al. Surge diagnosis method of centrifugal compressor based on multi-source data fusion[J]. CIESC Journal, 2023, 47(7): 2979-2987. DOI: 10.11949/0438-1157.20230454. | |
61 | HOU Y C, WANG Y X, PAN Y R, et al. Vibration-based incipient surge detection and diagnosis of the centrifugal compressor using adaptive feature fusion and sparse ensemble learning approach[J]. Advanced Engineering Informatics, 2023, 56: 101947. DOI: 10.1016/j.aei.2023.101947. |
62 | LISKIEWICZ G, JAESCHKE A, KRYŁŁOWICZ W. Acoustic signature of flow instabilities present in industrial centrifugal compressor[C]//ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, June 13-17, 2022, Rotterdam, Netherlands. 2022, DOI: 10.1115/GT2022-83018. |
63 | LEONI L, DE CARLO F, ABAEI M M, et al. Failure diagnosis of a compressor subjected to surge events: A data-driven framework[J]. Reliability Engineering & System Safety, 2023, 233: 109107. DOI: 10.1016/j.ress.2023.109107. |
[1] | 李玉光, 刘翔, 梁艳召, 刘双振. 飞轮储能装置在轨道交通中的应用研究[J]. 储能科学与技术, 2024, 13(8): 2679-2686. |
[2] | 周睿, 洪剑锋, 曹君慈, 秦伟, 赵卓越. 竖井式重力储能发电效率及功率稳定策略研究[J]. 储能科学与技术, 2024, 13(10): 3556-3565. |
[3] | 董文哲, 杨斯泐, 梁宗佑, 陈垠宇. 集成混合储能及RPC的牵引供电系统优化运行[J]. 储能科学与技术, 2023, 12(4): 1185-1193. |
[4] | 葛继翔, 纪明希, 丁玉龙, 罗伊默, 王利明. 水合盐热化学反应器参数优化与供暖应用案例分析[J]. 储能科学与技术, 2023, 12(12): 3799-3807. |
[5] | 董树锋, 刘灵冲, 唐坤杰, 赵海祺, 徐成司, 林立亨. 基于Simulink和低代码控制器的储能控制实验教学方法[J]. 储能科学与技术, 2022, 11(7): 2386-2397. |
[6] | 杨孝杰, 王海云, 蒋中川, 宋章华. 应用于飞轮储能的BLDC电机功率双向流动策略设计[J]. 储能科学与技术, 2022, 11(7): 2233-2240. |
[7] | 陈玉龙, 武鑫, 滕伟, 柳亦兵. 用于风电功率平抑的飞轮储能阵列功率协调控制策略[J]. 储能科学与技术, 2022, 11(2): 600-608. |
[8] | 刘石, 黄正, 胡亚轩, 杨毅, 高庆水, 张楚, 翁洪杰, 安然然, 李德波, 杜胜磊, 刘志刚. 空压机喘振现象及防喘技术浅析[J]. 储能科学与技术, 2020, 9(S1): 70-77. |
[9] | 赵正一, 俞葆青, 孔德卿, 任海滢. 城轨超级电容储能的容量配置和控制策略研究[J]. 储能科学与技术, 2020, 9(5): 1558-1561. |
[10] | 靳瑞久, 张向锋, 王致杰. 性能不一致的储能电池出力的自适应控制策略[J]. 储能科学与技术, 2019, 8(6): 1253-1259. |
[11] | 郭鑫, 赵也非, 郑俊生, 秦楠, 戴宁宁. 基于锂离子电容器的48 V启停电源系统设计[J]. 储能科学与技术, 2019, 8(6): 1159-1164. |
[12] | 杨丰萍, 郑文奇, 金林, 谢梦莎, 刘锋. 基于MMC的车载超级电容储能系统综合控制策略[J]. 储能科学与技术, 2019, 8(6): 1151-1158. |
[13] | 师长立, 韦统振, 霍群海, 何俊强, 张桐硕. 适用于直流分布式储能系统的控制策略[J]. 储能科学与技术, 2019, 8(4): 654-658. |
[14] | 傅昊, 姜彤, 崔岩, 权超. 基于直线电机的虚拟抽水蓄能系统运行控制策略[J]. 储能科学与技术, 2019, 8(1): 98-107. |
[15] | 赵思锋, 唐英伟, 王赛, 王大杰. 基于飞轮储能技术的城市轨道交通再生能回收控制策略研究[J]. 储能科学与技术, 2018, 7(3): 524-529. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||