储能科学与技术 ›› 2023, Vol. 12 ›› Issue (11): 3435-3444.doi: 10.19799/j.cnki.2095-4239.2023.0361
王凯轩1,2(), 左志涛1,2,3, 梁奇1, 郭文宾1, 陈海生1,2,3()
收稿日期:
2023-05-25
修回日期:
2023-08-15
出版日期:
2023-11-05
发布日期:
2023-11-16
通讯作者:
陈海生
E-mail:wangkaixuan@iet.cn;chen_hs@iet.cn
作者简介:
王凯轩(1998—),男,硕士,研究方向为压缩空气储能系统压缩机变工况联合调节,E-mail:wangkaixuan@iet.cn;
基金资助:
Kaixuan WANG1,2(), Zhitao ZUO1,2,3, Qi LIANG1, Wenbin GUO1, Haisheng CHEN1,2,3()
Received:
2023-05-25
Revised:
2023-08-15
Online:
2023-11-05
Published:
2023-11-16
Contact:
Haisheng CHEN
E-mail:wangkaixuan@iet.cn;chen_hs@iet.cn
摘要:
压缩空气储能被认为是最具发展前景的大规模物理储能技术之一,压缩机作为其关键部件对系统整体性能具有重要影响。离心式压缩机具备大流量、高压比、宽工况的运行特性,在压缩空气储能领域相对其他类型压缩机更具优势。受固定容积储气装置充气特性影响,压缩机常运行于非设计工况,对压缩机性能进行准确预测可提高系统效率,减少研发投入。20世纪50年代起,国内外学者对离心式压缩机性能预测开展了大量研究,建立了多种性能预测方法。本文将性能预测方法分为机理建模类、相似换算类与数据驱动类,在总结各方法基本原理及研究进展的基础上,定性分析了各方法在建模周期、预测精度、可移植性及适用场景等方面的差异,并对性能预测未来发展趋势进行了展望,旨在为离心式压缩机性能预测方法的研究与应用提供指导。
中图分类号:
王凯轩, 左志涛, 梁奇, 郭文宾, 陈海生. 离心式压缩机性能预测方法综述[J]. 储能科学与技术, 2023, 12(11): 3435-3444.
Kaixuan WANG, Zhitao ZUO, Qi LIANG, Wenbin GUO, Haisheng CHEN. Performance prediction methods for centrifugal compressors: A review[J]. Energy Storage Science and Technology, 2023, 12(11): 3435-3444.
1 | 余耀, 孙华, 许俊斌, 等. 压缩空气储能技术综述[J]. 装备机械, 2013(1): 68-74. |
YU Y, SUN H, XU J B, et al. Overview of compressed air energy storage technology[J]. The Magazine on Equipment Machinery, 2013(1): 68-74. | |
2 | COPPAGE J, DALLENBACH F. Study of supersonic radial compressors for refrigeration and pressurization systems[R], 1956. |
3 | GALVAS M R. Computer program for predicting off-design performance of centrifugal compressors[R], 1973. |
4 | PATRIK K, ADAM T, PAVEL M, et al. Searching for the most suitable loss model set for subsonic centrifugal compressors using an improved method for off-design performance prediction[J]. Energies, 2021, 14(24): 8545. |
5 | 秦立森, 赵晓路. 多级离心压气机变工况性能预估及S2流面矩阵解[J]. 工程热物理学报, 1996, 17(S1): 52-55. |
QIN L S, ZHAO X L. Performance prediction of multi-stage centrifugal compressor at design and off-design conditions and solution of the flow on S2 stream surace by matrix method[J]. Journal of Engineering Thermophysics, 1996, 17(S1): 52-55. | |
6 | PEI J Z, ZHAO Y Y, ZHAO M R, et al. Effects of inlet working condition and heat load on supercritical CO2 compressor performance[J]. Nuclear Engineering and Technology, 2023, 55(8): 2812-2822. |
7 | 詹涛, 张春路, 王昔林, 等. 基于RBF网络的制冷压缩机热力性能计算[J]. 上海交通大学学报, 2001, 35(8): 1172-1174. |
ZHAN T, ZHANG C L, WANG X L, et al. Thermodynamic performance simulation of refrigeration compressors based on RBF networks[J]. Journal of Shanghai Jiao Tong University, 2001, 35(8): 1172-1174. | |
8 | 叶俊锋. 基于数据与模型迁移的离心压缩机快速建模方法研究[D]. 徐州: 中国矿业大学, 2016. |
YE J F. Research on centrifugal compressor rapid modeling method based on data and model migration[D]. Xuzhou: China University of Mining and Technology, 2016. | |
9 | CHU F, WANG F L, WANG X G, et al. A model for parameter estimation of multistage centrifugal compressor and compressor performance analysis using genetic algorithm[J]. Science China Technological Sciences, 2012, 55(11): 3163-3175. |
10 | 代邦武. 基于多模型迁移策略的离心压缩机建模方法研究[D]. 徐州: 中国矿业大学, 2019. |
DAI B W. Research on modeling method of centrifugal compressor based on multi-model migration strategy[D]. Xuzhou: China University of Mining and Technology, 2019. | |
11 | 滕庚, 沈昕, 欧阳华, 等. 超临界二氧化碳离心压缩机性能预测模型研究[J]. 热力发电, 2020, 49(10): 173-179. |
TENG G, SHEN X, OUYANG H, et al. Research on performance prediction model of supercritical carbon dioxide centrifugal compressor[J]. Thermal Power Generation, 2020, 49(10): 173-179. | |
12 | 张波, 赛庆毅, 李斌. 基于蜗壳损失模型的离心压缩机性能预测研究[J]. 重庆工商大学学报(自然科学版), 2022, 39(1): 9-18. |
ZHANG B, SAI Q Y, LI B. Research on performance prediction of centrifugal compressor based on volute loss model[J]. Journal of Chongqing Technology and Business University (Natural Science Edition), 2022, 39(1): 9-18. | |
13 | GALVAS M R. Analytical correlation of centrifugal compressor design geometry for maximum efficiency with specific speed[R], 1972. |
14 | 李文华, 钟瑞兴. 离心压缩机性能预测方法探讨[J]. 压缩机技术, 2007(5): 7-9. |
LI W H, ZHONG R X. Investigation of way to performance forecast for centrifugal compressor[J]. Compressor Technology, 2007(5): 7-9. | |
15 | 吴宝海, 席光, 王尚锦, 等. 离心式压缩机性能预测模型研究[J]. 风机技术, 1999, 41(3): 5-8, 40. |
WU B H, XI G, WANG S J, et al. Research on performance predictive model for centrifugal compressor[J]. Compressor Blower & Fan Technology, 1999, 41(3): 5-8, 40. | |
16 | AUNGIER R H. Centrifugal compressors: A strategy for aerodynamic design and analysis[M]. New York: ASME Press, 2000. |
17 | OH H, YOON E, CHUNG M. An optimum set of loss models for performance prediction of centrifugal compressors[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 1997. |
18 | ZHANG C W, DONG X Z, LIU X Y, et al. A method to select loss correlations for centrifugal compressor performance prediction[J]. Aerospace Science and Technology, 2019, 93: 105335. |
19 | 闫雪, 左志涛, 梁奇, 等. 带可调导叶离心压缩机变工况性能预测模型研究[J]. 中国电机工程学报, 2016, 36(12): 3381-3390. |
YAN X, ZUO Z T, LIANG Q, et al. Research of off-design performance prediction model of centrifugal compressor with adjustable guide vane[J]. Proceedings of the CSEE, 2016, 36(12): 3381-3390. | |
20 | 闫雪. 导叶调节对双级离心压缩机性能影响的研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2016. |
YAN X. Investigation on influence of adiustable inlet guide vane on performance of two-stage centrifugal compressor[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2016. | |
21 | SHAO W Y, DU J, YANG J G, et al. Investigation on one-dimensional loss models for predicting performance of multistage centrifugal compressors in supercritical CO2 Brayton cycle[J]. Journal of Thermal Science, 2021, 30(1): 133-148. |
22 | CHANG Z Y, ZHAO Y, ZHAO Y Y, et al. Off-design performance and control strategies of sCO2 recompression power systems considering compressor operating safety[J]. Applied Thermal Engineering, 2023, 232: 121044. |
23 | 阎超, 于剑, 徐晶磊, 等. CFD模拟方法的发展成就与展望[J]. 力学进展, 2011, 41(5): 562-589. |
YAN C, YU J, XU J L, et al. On the achievements and prospects for the methods of computational fluid dynamics[J]. Advances in Mechanics, 2011, 41(5): 562-589. | |
24 | 孟冲, 左志涛, 郭文宾, 等. 压缩空气储能系统高压离心压缩机进口导叶调节规律研究[J]. 工程热物理学报, 2021, 42(11): 2834-2840. |
MENG C, ZUO Z T, GUO W B, et al. Research on regulation law of inlet guide vane in high-pressure centrifugal compressor of CAES[J]. Journal of Engineering Thermophysics, 2021, 42(11): 2834-2840. | |
25 | 陈宗华, 谷传纲, 舒信伟. 采用混合工质的两级离心压缩机性能数值分析[J]. 流体机械, 2011, 39(3): 23-27. |
CHEN Z H, GU C G, SHU X W. Numerical investigation of the performance of two-stage centrifugal compressor with mixed gases[J]. Fluid Machinery, 2011, 39(3): 23-27. | |
26 | 王企鲲, 陈康民, 戴韧. 多级离心压缩机级间弯道与回流器内流动的数值研究[J]. 流体机械, 2005, 33(11): 8-12, 87. |
WANG Q K, CHEN K M, DAI R. Numerical investigation for aerodynamic performance of the crossover and deswirl cascade inside a multistage centrifugal compressor[J]. Fluid Machinery, 2005, 33(11): 8-12, 87. | |
27 | 张国路迢, 王江峰, 娄聚伟, 等. 半高叶片扩压器对离心压缩机流动性能影响的数值研究[J/OL]. 西安交通大学学报: 1-9[2023-08-28]. http://kns.cnki.net/kcms/detail/61.1069.T.20230524.1650.006.html. |
28 | 孙恩慧, 杨振宇, 廖凯龙, 等. 超临界二氧化碳离心压缩机设计及性能预测[J]. 热力发电, 2023, 52(6): 127-134, 156. |
SUN E H, YANG Z Y, LIAO K L, et al. Design and performance prediction of supercritical carbon dioxide centrifugal compressor[J]. Thermal Power Generation, 2023, 52(6): 127-134, 156. | |
29 | 成沉, 刘军, 许昊. 多级离心压缩机性能预测软件设计[J]. 风机技术, 2020, 62(S1): 1-4. |
CHENG C, LIU J, XU H. Design of performance prediction software for multistage centrifugal compressor[J]. Chinese Journal of Turbomachinery, 2020, 62(S1): 1-4. | |
30 | 郝岩, 姜姝. 多段压缩机整机性能曲线计算软件的开发[J]. 风机技术, 2014, 56(2): 36-40. |
HAO Y, JIANG S. Development of calculation software for multi-segment compressor performance curve[J]. Compressor, Blower & Fan Technology, 2014, 56(2): 36-40. | |
31 | 李晓平, 卓铭浩, 吕勃蓬, 等. 离心压缩机性能换算软件的开发与应用[J]. 油气储运, 2013, 32(8): 824-828. |
LI X P, ZHUO M H, LYU B P, et al. Development and application of performance conversion software for centrifugal compressor[J]. Oil & Gas Storage and Transportation, 2013, 32(8): 824-828. | |
32 | 谢英, 麻秀芬, 谢婷, 等. 基于相似原理的长输管道压缩机能耗分析[J]. 油气储运, 2018, 37(4): 421-427. |
XIE Y, MA X F, XIE T, et al. Analysis on energy consumption of compressor in long-distance pipeline based on similitude principle[J]. Oil & Gas Storage and Transportation, 2018, 37(4): 421-427. | |
33 | 朱昌允, 秦国良, 吴让利. 基于试验的离心压缩机两种相似换算的比较[J]. 风机技术, 2011, 53(1): 24-27. |
ZHU C Y, QIN G L, WU R L. Comparison of the two similar conversion of centrifugal compressor based on test[J]. Compressor, Blower & Fan Technology, 2011, 53(1): 24-27. | |
34 | WU S M, RÍOS-MERCADO R Z, BOYD E A, et al. Model relaxations for the fuel cost minimization of steady-state gas pipeline networks[J]. Mathematical and Computer Modelling, 2000, 31(2/3): 197-220. |
35 | 熊浩云, 吴长春, 玉德俊. 适用于输气管道运行方案优化的压缩机功率拟合函数[J]. 油气储运, 2017, 36(6): 734-738. |
XIONG H Y, WU C C, YU D J. The fitting function of compress power suitable for optimization of gas pipeline operation scheme[J]. Oil & Gas Storage and Transportation, 2017, 36(6): 734-738. | |
36 | 张轩, 姜进田, 王华青, 等. 基于回归分析法的离心式压缩机性能模型[J]. 油气储运, 2018, 37(2): 197-203. |
ZHANG X, JIANG J T, WANG H Q, et al. A centrifugal compressor performance model based on regression analysis method[J]. Oil & Gas Storage and Transportation, 2018, 37(2): 197-203. | |
37 | 王伟, 姚杨, 马最良. 基于BP神经网络的压缩机性能预测模型的建立[J]. 流体机械, 2005, 33(9): 21-24. |
WANG W, YAO Y, MA Z L. Model of compressor performance prediction based on error back-propagation artificial neural network[J]. Fluid Machinery, 2005, 33(9): 21-24. | |
38 | 王丽春, 樊会元. 离心压缩机性能预测的神经网络方法[J]. 华东冶金学院学报, 2000, 17(2): 142-145. |
WANG L C, FAN H Y. Neural network approach for predictions of centrifugal compressors[J]. Journal of East China University of Metallargy, 2000, 17(2): 142-145. | |
39 | 谢慕君, 孟祥光. 基于MATLAB的RBF神经网络在离心压缩机性能预测中的应用[J]. 石油化工自动化, 2008, 44(5): 46-48, 52. |
XIE M J, MENG X G. The application of RBF neural network based on MATLAB for the performance prediction of centrifugal compressors[J]. Automation in Petro-Chemical Industry, 2008, 44(5): 46-48, 52. | |
40 | 朱明星, 张德龙. RBF网络基函数中心选取算法的研究[J]. 安徽大学学报(自然科学版), 2000, 24(1): 72-78. |
ZHU M X, ZHANG D L. Study on the algorithms of selecting the radial basis function center[J]. Journal of Anhui University (Natural Sciences), 2000, 24(1): 72-78. | |
41 | 黄胜忠. 基于RBF神经网络的离心压缩机的性能预测研究[J]. 煤矿机械, 2011, 32(1): 64-66. |
HUANG S Z. Study of predication on performance of centrifugal compressor based on RBF neutral network[J]. Coal Mine Machinery, 2011, 32(1): 64-66. | |
42 | HUANG S Z. Research and application of wavelet neural networks of particle swarm optimization algorithm in the performance prediction of centrifugal compressor[J]. Advanced Materials Research, 2011, 187: 271-276. |
43 | 武树宝, 黄港港. 基于PSO-SVM模型的离心式压缩机性能分析及预测[J]. 山东化工, 2021, 50(5): 179-181. |
WU S B, HUANG G G. Performance analysis and prediction of centrifugal compressor based on PSO-SVM model[J]. Shandong Chemical Industry, 2021, 50(5): 179-181. | |
44 | 张平, 李亚民, 王冠霖, 等. 基于IPSO-LSSVM的离心式压缩机性能预测方法[J]. 油气储运, 2023, 42(1): 79-86. |
ZHANG P, LI Y M, WANG G L, et al. Performance prediction method of centrifugal compressor based on IPSO-LSSVM[J]. Oil & Gas Storage and Transportation, 2023, 42(1): 79-86. | |
45 | LU J D, GAO F R. Model migration with inclusive similarity for development of a new process model[J]. Industrial & Engineering Chemistry Research, 2008, 47(23): 9508-9516. |
[1] | 李文慧, 焦勇涵, 郭歌, 李佳俊, 邓建强. 压缩空气储能系统供冷性能提升[J]. 储能科学与技术, 2023, 12(9): 2833-2841. |
[2] | 许永红, 吴玉庭, 张红光, 杨富斌, 王焱. 基于气动马达的微型压缩空气储能系统的试验研究[J]. 储能科学与技术, 2023, 12(6): 1854-1861. |
[3] | 孙晓霞, 桂中华, 高梓玉, 周冰倩, 刘夏, 张新敬, 郭欢, 李文, 盛勇, 朱阳历, 周健, 徐玉杰. 压缩空气储能系统动态运行特性[J]. 储能科学与技术, 2023, 12(6): 1840-1853. |
[4] | 张玮灵, 古含, 章超, 葛昂, 应元旭. 压缩空气储能技术经济特点及发展趋势[J]. 储能科学与技术, 2023, 12(4): 1295-1301. |
[5] | 虞启辉, 魏志刚, 孙国鑫, 路亮. 基于喷雾换热的压缩空气准等温膨胀系统实验研究及性能分析[J]. 储能科学与技术, 2023, 12(3): 878-888. |
[6] | 耿晓倩, 徐玉杰, 黄景坚, 凌浩恕, 张雪辉, 孙爽, 陈海生. 先进压缩空气储能系统全生命周期能耗及二氧化碳排放[J]. 储能科学与技术, 2022, 11(9): 2971-2979. |
[7] | 吴玉庭, 寇真峰, 张灿灿, 吴伊洋. 列管式固体氯化钠蓄冷换热器动态分布参数分析[J]. 储能科学与技术, 2022, 11(6): 1988-1995. |
[8] | 刘迪, 张甜甜, 彭宇维, 唐晓梅, 王丹, 毛承雄. 压缩空气储能系统释能环节轴系建模与振荡分析[J]. 储能科学与技术, 2022, 11(2): 563-572. |
[9] | 郑澳辉, 曹峥, 徐玉杰, 陈海生, 邓建强. 压缩空气储能驱动反渗透海水淡化系统[J]. 储能科学与技术, 2021, 10(5): 1597-1606. |
[10] | 夏琦, 何阳, 徐玉杰, 陈海生, 邓建强. 绝热压缩空气储能系统冷热电联供与负荷匹配特性[J]. 储能科学与技术, 2021, 10(5): 1494-1502. |
[11] | 郭丁彰, 尹钊, 周学志, 徐玉杰, 盛勇, 索文辉, 陈海生. 压缩空气储能系统储气装置研究现状与发展趋势[J]. 储能科学与技术, 2021, 10(5): 1486-1493. |
[12] | 周升辉, 何阳, 陈海生, 徐玉杰, 邓建强. 喷射器强化压缩空气储能充能过程[J]. 储能科学与技术, 2021, 10(5): 1503-1513. |
[13] | 李扬, 张新敬, 宋健斐, 李笑宇, 郭欢, 徐玉杰, 陈海生. 压缩空气储能系统释能过程动态调控[J]. 储能科学与技术, 2021, 10(5): 1514-1523. |
[14] | 王星, 李文, 朱阳历, 左志涛, 陈海生. CAES轴流涡轮弯导叶优化设计与流动损失控制机理[J]. 储能科学与技术, 2021, 10(5): 1524-1535. |
[15] | 徐冉, 左志涛, 黎翱, 王霞, 陈明, 陈海生. 基于析湿系数法活塞压缩机级间变工况析水特性[J]. 储能科学与技术, 2021, 10(5): 1556-1564. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||