储能科学与技术 ›› 2023, Vol. 12 ›› Issue (3): 878-888.doi: 10.19799/j.cnki.2095-4239.2022.0672

• 储能系统与工程 • 上一篇    下一篇

基于喷雾换热的压缩空气准等温膨胀系统实验研究及性能分析

虞启辉1(), 魏志刚1, 孙国鑫1(), 路亮2   

  1. 1.内蒙古科技大学
    2.北奔重汽汽车集团有限公司研发中心,内蒙古 包头 014010
  • 收稿日期:2022-11-14 修回日期:2022-11-24 出版日期:2023-03-05 发布日期:2023-04-14
  • 通讯作者: 孙国鑫 E-mail:919452849@qq.com;sunguoxin@imust.edu.cn
  • 作者简介:虞启辉(1983—),男,教授,研究方向为压缩空气存储与利用技术、热能存储与利用技术等,E-mail:919452849@qq.com
  • 基金资助:
    国家自然科学基金项目(52065054);内蒙古自治区自然科学基金项目(2022LHMS05023);内蒙古科技大学基本科研业务费专项资金资助

Experimental and performance study of spray heat transfer-based compressed air quasi-isothermal expansion system

Qihui YU1(), Zhigang WEI1, Guoxin SUN1(), Liang LU2   

  1. 1.Inner Mongolia University of Science and Technology
    2.Research and Development Center of Beiben Sinotruk Automobile Group Co. LTD, Baotou 014010, Inner Mongolia, China
  • Received:2022-11-14 Revised:2022-11-24 Online:2023-03-05 Published:2023-04-14
  • Contact: Guoxin SUN E-mail:919452849@qq.com;sunguoxin@imust.edu.cn

摘要:

压缩空气储能(CAES)在一定程度上能够提高电网输电可靠性,是目前最具前景的储能技术之一,但系统工作循环效率低限制了其进一步发展。因此,为提高系统工作循环效率,对CAES系统工作过程进行相关研究。在压缩空气膨胀过程中喷入高温水雾以增强空气与水雾之间的热交换,从而实现气体的准等温膨胀,是提高CAES系统工作循环效率的有效途径。首先,本工作建立了压缩空气准等温膨胀数学模型;其次,搭建基于喷雾换热的压缩空气准等温膨胀系统进行相关实验研究,并对数学模型进行验证;最后,为获得压缩空气准等温膨胀系统的相关性能,利用所建立的数学模型,对系统工作过程中缸内空气压力和温度的变化情况以及影响系统输出功和释能效率的参数进行研究。研究结果表明:进气压力为1 MPa时,与绝热膨胀相比,准等温膨胀缸内空气最大温差仅为绝热膨胀的14.4%,系统输出功增加147 J,释能效率提高19.24%。当喷雾压力为6 MPa、进气压力为0.5 MPa时,系统释能效率可达81.41%。本研究为基于喷雾换热的压缩空气准等温膨胀研究提供理论支持。

关键词: 喷雾换热, 压缩空气储能, 准等温膨胀, 释能效率

Abstract:

Compressed air energy storage (CAES) can improve the reliability of power transmission to a certain extent. It is one of the most promising energy storage technologies at present, but the low-efficiency working cycle of the system limits its further development. Therefore, to improve the working cycle efficiency of the system, the working process of the CAES system is studied. For that aspect, injecting high-temperature water mist into compressed air is used to enhance the heat exchange between air and water mist, resulting in quasi-isothermal gas expansion. First, a mathematical model of quasi-isothermal expansion of compressed air is established. Second, a spray heat transfer-based quasi-isothermal expansion system of compressed air was built to conduct relevant experimental research, and the mathematical model was verified. Finally, to obtain the related performance of the compressed air quasi-isothermal expansion system, the mathematical model is used to simulate and study the changes in the air pressure and temperature in the cylinder, the parameters that affect the output work, and the energy release efficiency of the system. Compared with the adiabatic expansion, when the inlet pressure is 1 MPa, the maximum temperature difference of the air in the quasi-isothermal expansion cylinder is only 14.4% of the adiabatic expansion, the system output power increases by 147 J, and the energy release efficiency increases by 19.24%. When the spray pressure is 6 MPa and the intake pressure is 0.5 MPa, the energy release efficiency of the system can reach 81.41%. This study theoretically supports the spray heat transfer-based quasi-isothermal expansion of compressed air.

Key words: spray heat transfer, compressed air energy storage, quasi-isothermal expansion, energy release efficiency

中图分类号: