1 |
丁志康, 王维俊, 米红菊, 等. 新能源发电系统中储能技术现状与分析[J]. 当代化工, 2020, 49(7): 1519-1522.
|
|
DING Z K, WANG W J, MI H J, et al. Current situation and analysis of energy storage technology in new energy power generation system[J]. Contemporary Chemical Industry, 2020, 49(7): 1519-1522.
|
2 |
周喜超. 电力储能技术发展现状及走向分析[J]. 热力发电, 2020, 49(8): 7-12.
|
|
ZHOU X C. Development status and trend analysis of electric energy storage technology[J]. Thermal Power Generation, 2020, 49(8): 7-12.
|
3 |
DE SISTERNES F J, JENKINS J D, BOTTERUD A. The value of energy storage in decarbonizing the electricity sector[J]. Applied Energy, 2016, 175: 368-379.
|
4 |
BUDT M, WOLF D, SPAN R, et al. A review on compressed air energy storage: Basic principles, past milestones and recent developments[J]. Applied Energy, 2016, 170: 250-268.
|
5 |
何子伟, 罗马吉, 涂正凯. 等温压缩空气储能技术综述[J]. 热能动力工程, 2018, 33(2): 1-6.
|
|
HE Z W, LUO M J, TU Z K. Survey of the isothermal compressed air energy storage technologies[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33(2): 1-6.
|
6 |
QIN C, LOTH E. Liquid piston compression efficiency with droplet heat transfer[J]. Applied Energy, 2014, 114: 539-550.
|
7 |
何青, 王珂. 等温压缩空气储能技术及其研究进展[J]. 热力发电, 2022(8): 11-19.
|
|
HE Q, WANG K. Research progress of isothermal compressed air energy storage technology[J]. Thermal Power Generation, 2022(8): 11-19.
|
8 |
IGOBO O N, DAVIES P A. Review of low-temperature vapour power cycle engines with quasi-isothermal expansion[J]. Energy, 2014, 70: 22-34.
|
9 |
李敏. 活塞式压缩机喷水内冷却的实验研究[J]. 流体工程, 1993(7): 10-13, 63.
|
|
LI M. Experimental research of internal water-spray cooling in reciprocating compressor[J]. Fluid Machinery, 1993(7): 10-13, 63.
|
10 |
ZHANG C, LI P Y, VAN DE VEN J D, et al. Design analysis of a liquid-piston compression chamber with application to compressed air energy storage[J]. Applied Thermal Engineering, 2016, 101: 704-709.
|
11 |
RICE A T, LI P Y, SANCKENS C J. Optimal efficiency-power tradeoff for an air compressor/expander[J]. Journal of Dynamic Systems, Measurement, and Control, 2018, 140(2): doi: 10.1115/1.4037652.
|
12 |
MCBRIDE T O, BOLLINGER B, BESSETTE J, et al. Systems and methods for foam-based heat exchange during energy storage and recovery using compressed gas: US20130074941[P]. 2013-03-28.
|
13 |
PATIL V C, RO P I. Experimental study of heat transfer enhancement in liquid piston compressor using aqueous foam[J]. Applied Thermal Engineering, 2020, 164: doi: 10.1016/j.applthermaleng.2019.114441.
|
14 |
CHENG W L, ZHANG W W, CHEN H, et al. Spray cooling and flash evaporation cooling: The Current development and application[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 614-628.
|
15 |
ZHANG X J, XU Y J, ZHOU X Z, et al. A near-isothermal expander for isothermal compressed air energy storage system[J]. Applied Energy, 2018, 225: 955-964.
|
16 |
YU Q H, LI X D, GENG Y Q, et al. Study on quasi-isothermal expansion process of compressed air based on spray heat transfer[J]. Energy Reports, 2022, 8: 1995-2007.
|
17 |
YU Q H, WANG Q C, TAN X, et al. Water spray heat transfer gas compression for compressed air energy system[J]. Renewable Energy, 2021, 179: 1106-1121.
|
18 |
蔡茂林, 孙珺朋, 张波, 等. 单缸气动发动机的数学建模与实验验证[J]. 液压与气动, 2015(9): 85-88.
|
|
CAI M L, SUN J P, ZHANG B, et al. Modelling and experimental verification of a single-cylinder compressed air engine[J]. Chinese Hydraulics & Pneumatics, 2015(9): 85-88.
|
19 |
DIB G, HABERSCHILL P, RULLIÈRE R, et al. Thermodynamic investigation of quasi-isothermal air compression/expansion for energy storage[J]. Energy Conversion and Management, 2021, 235: doi: 10.1016/j.enconman.2021.114027.
|
20 |
蔡茂林. 现代气动技术理论与实践 第一讲: 气动元件的流量特性[J]. 液压气动与密封, 2007, 27(2): 44-48.
|
|
CAI M L. Theory and practice of modern pneumatic technology lecture 1: Flow characteristics of pneumatic components[J]. Hydraulics Pneumatics & Seals, 2007, 27(2): 44-48.
|
21 |
ODUKOMAIYA A, ABU-HEIBA A, GLUESENKAMP K R, et al. Thermal analysis of near-isothermal compressed gas energy storage system[J]. Applied Energy, 2016, 179: 948-960.
|
22 |
CHEN H, PENG Y H, WANG Y L, et al. Thermodynamic analysis of an open type isothermal compressed air energy storage system based on hydraulic pump/turbine and spray cooling[J]. Energy Conversion and Management, 2020, 204: doi: 10.1016/j.enconman.2019.112293.
|
23 |
ZHAO P, LAI Y Q, XU W P, et al. Performance investigation of a novel near-isothermal compressed air energy storage system with stable power output[J]. International Journal of Energy Research, 2020, 44(14): 11135-11151.
|
24 |
刘乃玲, 张旭, 杨建坤. 压力式细雾喷嘴流量特性实验研究[J]. 暖通空调, 2005, 35(9): 119-121.
|
|
LIU N L, ZHANG X, YANG J K. Experimental research on flow rate characteristics of fine mist pressure nozzles[J]. Hv & Ac, 2005, 35(9): 119-121.
|
25 |
李豪豪. 气缸密封圈动态摩擦特性仿真及试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
|
|
LI H H. Simulation and experimental study on dynamic friction characteristics of cylinder seal[D]. Harbin: Harbin Institute of Technology, 2019.
|
26 |
王佳, 贾冠伟, 许未晴, 等. 微米级水雾准等温压缩方法的能耗分析[J]. 液压与气动, 2018(6): 113-118.
|
|
WANG J, JIA G W, XU W Q, et al. Energy consumption analysis of quasi-isothermal compression method for micron-sized water spray[J]. Chinese Hydraulics & Pneumatics, 2018(6): 113-118.
|
27 |
HOU X C, ZHANG H G, YU F, et al. Free piston expander-linear generator used for organic Rankine cycle waste heat recovery system[J]. Applied Energy, 2017, 208: 1297-1307.
|