储能科学与技术 ›› 2025, Vol. 14 ›› Issue (2): 624-635.doi: 10.19799/j.cnki.2095-4239.2024.0778

• 储能系统与工程 • 上一篇    下一篇

基于烟气扩散的储能柜内锂电池热失控预警研究

朱鹏杰1(), 李伟1(), 张楚1, 宋浩1, 李贝贝1, 刘秀梅1, 刘利利2   

  1. 1.中国矿业大学机电工程学院,江苏 徐州 221116
    2.江苏八方安全设备有限公司,江苏 徐州 221000
  • 收稿日期:2024-08-21 修回日期:2024-09-06 出版日期:2025-02-28 发布日期:2025-03-18
  • 通讯作者: 李伟 E-mail:ts22050217p31@cumt.edu.cn;cmeetechnologylw@163.com
  • 作者简介:朱鹏杰(1996—),男,硕士研究生,主要从事储能系统电池热失控预警及消防方面研究,E-mail:ts22050217p31@cumt.edu.cn
  • 基金资助:
    中央高校基本科研业务费重大培育项目(2021ZDPY0222)

Study on early warning system for thermal runaway of lithium batteries in energy storage cabinets due to smoke and gas diffusion

Pengjie ZHU1(), Wei LI1(), Chu ZHANG1, Hao SONG1, Beibei LI1, Xiumei LIU1, Lili LIU2   

  1. 1.School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
    2.Jiangsu Bafang Safety Equipment Limited Company, Xuzhou 221000, Jiangsu, China
  • Received:2024-08-21 Revised:2024-09-06 Online:2025-02-28 Published:2025-03-18
  • Contact: Wei LI E-mail:ts22050217p31@cumt.edu.cn;cmeetechnologylw@163.com

摘要:

研究锂电池热失控过程,及早地发出热失控预警,是保障储能系统安全的重要措施。然而,目前的锂电池热失控烟气预警研究大多数停留在理论方法上,较少结合应用场景探究预警方法的实用性与可靠性。本文通过搭建实验台探究在储能柜和电池包场景下,磷酸铁锂电池过充至热失控时的温度变化与储能柜内烟气浓度变化的关系,比较储能柜内不同工业用烟气传感器对锂电池热失控预警的有效性。实验结果表明:在将传感器安放在储能柜顶部并且使防水透气阀上的透气孔正对着传感器的条件下,安全阀打开后,烟雾和气体传感器依次检测到数值;其中烟雾传感器反应最灵敏,能够在安全阀刚打开时发出预警信号;烃类气体传感器能够较准确地反应出锂电池热失控时刻。之后通过Ansys Fluent模拟电池包内锂电池安全阀打开后,气体烟雾在储能柜中的扩散情况。仿真结果表明:烟雾与气体的扩散过程主要受气体动量以及防水透气阀壳体上透气孔位置的影响;储能柜顶部位置可以及时准确地检测到逸散出的气体烟雾。本文研究成果可为储能柜中锂电池热失控预警策略以及气体烟雾传感器的位置选择提供指导。

关键词: 磷酸铁锂电池, 热失控, 储能柜, 烟气扩散, 预警, 仿真

Abstract:

Through investigation of thermal runaway processes in lithium batteries and the timely issuance of early warnings are crucial for ensuring the safe operation of energy storage systems. However, most current research on thermal runaway smoke and gas warnings for lithium batteries remains theoretical, with limited exploration into the practicality and reliability of these methods in real-world scenarios. In this study, the relationship between temperature changes during overcharging and thermal runaway of lithium iron phosphate batteries in energy storage cabinets and battery packs, and the subsequent changes in smoke and gas concentrations is examined. This was achieved by building experimental platforms to explore these scenarios. The study also compare the effectiveness of various industrial smoke and gas sensors within energy storage cabinets in warning of lithium battery thermal runaway. The experimental results indicate that, by placing the sensor at the top of the energy storage cabinet and the vent hole of the waterproof-breathable valve aligned with the sensor, the smoke and gas sensors detect the values sequentially after the safety valve opens. The smoke sensor is the most sensitive response, capable of issuing an early warning signal immediately after the safety valve opens. Hydrocarbon gas sensors provide a precise indication of the moment of thermal runaway in lithium batteries. Subsequently, Ansys Fluent was employed to simulate the dispersion of gas and smoke within the energy storage cabinet following the activation of the lithium battery's safety valve in the battery pack. The simulation results reveal that the diffusion of smoke and gas was primarily influenced by the momentum of the gas and the positioning of ventilation holes on the waterproof, breathable valve housing. The top of the energy storage cabinet allows for timely and accurate detection of escaping gas and smoke. The findings of this study offer guidance for thermal runaway warning strategies in energy storage cabinets for lithium batteries and the placement of gas and smoke sensors.

Key words: lithium iron phosphate battery, thermal runaway, energy storage cabinet, smoke and gas diffusion, early warning, simulation

中图分类号: