1 |
KENNEDY R W, MARR K C, EZEKOYE O A. Gas release rates and properties from lithium cobalt oxide lithium ion battery arrays[J]. Journal of Power Sources, 2021, 487: 229388. DOI:10.1016/j.jpowsour.2020.229388.
|
2 |
DIAZ F, WANG Y, WEYHE R, et al. Gas generation measurement and evaluation during mechanical processing and thermal treatment of spent Li-ion batteries[J]. Waste Management, 2019, 84: 102-111. DOI:10.1016/j.wasman.2018.11.029.
|
3 |
LARSSON F, ANDERSSON P, BLOMQVIST P, et al. Toxic fluoride gas emissions from lithium-ion battery fires[J]. Scientific Reports, 2017, 7(1): 10018. DOI:10.1038/s41598-017-09784-z.
|
4 |
FERNANDES Y, BRY A, DE PERSIS S. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery[J]. Journal of Power Sources, 2018, 389: 106-119. DOI:10.1016/j.jpowsour.2018.03.034.
|
5 |
黄峥, 秦鹏, 石晗, 等. 过热条件下86 Ah磷酸铁锂电池热失控行为研究[J]. 高电压技术, 2022, 48(3): 1185-1191. DOI: 10.13336/j.1003-6520.hve.20210126.
|
|
HUANG Z, QIN P, SHI H, et al. Study on thermal runaway behavior of 86 Ah lithium iron phosphate battery under overheat condition[J]. High Voltage Engineering, 2022, 48(3): 1185-1191. DOI: 10.13336/j.1003-6520.hve.20210126.
|
6 |
WENGER M, WALLER R, LORENTZ V R H, et al. Investigation of gas sensing in large lithium-ion battery systems for early fault detection and safety improvement[C]//IECON 2014—40th Annual Conference of the IEEE Industrial Electronics Society. October 29-November 1, 2014, Dallas, TX, USA. IEEE, 2014: 5654-5659. DOI:10.1109/IECON.2014.7049366.
|
7 |
CUMMINGS S R, SWARTZ S L, FRANK N B, et al. Systems and methods for monitoring for a gas analyte: US20180003685[P]. 2018-01-04.
|
8 |
杨启帆, 马宏忠, 刘宝稳, 等. 锂离子电池气体故障特性分析及诊断方法[J]. 高电压技术, 2021, 47(9): 3315-3330. DOI: 10.13336/j.1003-6520.hve.20201489.
|
|
YANG Q F, MA H Z, LIU B W, et al. Gas fault characteristics analysis and diagnosis method of lithium-ion battery[J]. High Voltage Engineering, 2021, 47(9): 3315-3330. DOI: 10.13336/j.1003-6520.hve.20201489.
|
9 |
LIAO Z H, ZHANG S, LI K, et al. Hazard analysis of thermally abused lithium-ion batteries at different state of charges[J]. Journal of Energy Storage, 2020, 27: 101065. DOI:10.1016/j.est.2019.101065.
|
10 |
RAGHAVAN A, KIESEL P, LOCHBAUM A, et al. Battery management based on internal optical sensing: US9553465[P]. 2017-01-24.
|
11 |
HILL D, GULLY B, AGARWAL A, et al. Detection of off gassing from Li-ion batteries[C]//2013 IEEE Energytech. May 21-23, 2013, Cleveland, OH, USA. IEEE, 2013: 1-7. DOI:10.1109/EnergyTech.2013.6645307.
|
12 |
STURK D, ROSELL L, BLOMQVIST P, et al. Analysis of Li-ion battery gases vented in an inert atmosphere thermal test chamber[J]. Batteries, 2019, 5(3): 61. DOI:10.3390/batteries5030061.
|
13 |
CUMMINGS S, SWARTZ N. Off-gas monitoring for lithium ion battery health and safety[C/OL] //Wright Patterson AFB: Power Sources Committee Meeting, 2017. [2018-05-03]. https://www.ndia.org/-/media/sites/ndia/divisions/manufacturing/documents/nexceri s_off-gas _monitoring.ashx?la=en
|
14 |
杨梦洁, 杨爱军, 叶奕君, 等. 基于气体分析的锂离子电池热失控早期预警研究进展[J]. 电工技术学报, 2023, 38(17): 4507-4538. DOI: 10.19595/j.cnki.1000-6753.tces.220832.
|
|
YANG M J, YANG A J, YE Y J, et al. Research progress on early warning of thermal runaway of Li-ion batteries based on gas analysis[J]. Transactions of China Electrotechnical Society, 2023, 38(17): 4507-4538. DOI: 10.19595/j.cnki.1000-6753.tces.220832.
|
15 |
王铭民, 孙磊, 郭鹏宇, 等. 基于气体在线监测的磷酸铁锂储能电池模组过充热失控特性[J]. 高电压技术, 2021, 47(1): 279-286. DOI: 10.13336/j.1003-6520.hve.20200227004.
|
|
WANG M M, SUN L, GUO P Y, et al. Overcharge and thermal runaway characteristics of lithium iron phosphate energy storage battery modules based on gas online monitoring[J]. High Voltage Engineering, 2021, 47(1): 279-286. DOI: 10.13336/j.1003-6520.hve.20200227004.
|
16 |
石爽, 吕娜伟, 马敬轩, 等. 不同类型气体探测对磷酸铁锂电池储能舱过充安全预警有效性对比[J]. 储能科学与技术, 2022, 11(8): 2452-2462. DOI: 10.19799/j.cnki.2095-4239.2022.0240.
|
|
SHI S, LYU N W, MA J X, et al. Comparative study on the effectiveness of different types of gas detection on the overcharge safety early warning of a lithium iron phosphate battery energy storage compartment[J]. Energy Storage Science and Technology, 2022, 11(8): 2452-2462. DOI: 10.19799/j.cnki. 2095-4239.2022.0240.
|
17 |
种晋. 基于气体、电解液、烟感及温感储能热失控早期报警研究[J]. 电源技术, 2023, 47(10): 1332-1334. DOI: 10.3969/j.issn.1002-087X.2023.10.020.
|
|
CHONG J. Research on early warning for thermal runaway of energy storage cabinet based on gas, electrolyte, smoke and temperature detectors[J]. Chinese Journal of Power Sources, 2023, 47(10): 1332-1334. DOI: 10.3969/j.issn.1002-087X.2023.10.020.
|
18 |
JIN Y, ZHENG Z K, WEI D H, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 4(8): 1714-1729. DOI:10.1016/j.joule.2020.05.016.
|
19 |
OHSAKI T, KISHI T, KUBOKI T, et al. Overcharge reaction of lithium-ion batteries[J]. Journal of Power Sources, 2005, 146(1/2): 97-100. DOI:10.1016/j.jpowsour.2005.03.105.
|
20 |
郭东亮, 刘洋, 肖鹏, 等. 储能电站用锂离子电池热失控早期预警参数研究[J]. 消防科学与技术, 2020, 39(8): 1156-1159. DOI: 10.3969/j.issn.1009-0029.2020.08.031.
|
|
GUO D L, LIU Y, XIAO P, et al. Research on early warning parameters of thermal runaway of lithium ion battery for energy storage power station[J]. Fire Science and Technology, 2020, 39(8): 1156-1159. DOI: 10.3969/j.issn.1009-0029.2020.08.031.
|
21 |
高飞, 杨凯, 王聪杰, 等. 能量型磷酸铁锂电池过充致热失控试验研究[J]. 合成材料老化与应用, 2021, 50(1): 39-41, 67. DOI: 10.16584/j.cnki.issn1671-5381.2021.01.012.
|
|
GAO F, YANG K, WANG C J, et al. Experimental study on thermal runaway of LiFePO4 battery under overcharging condition[J]. Synthetic Materials Aging and Application, 2021, 50(1): 39-41, 67. DOI: 10.16584/j.cnki.issn1671-5381.2021.01.012.
|
22 |
唐佳, 于子轩, 李雨珮, 等. 磷酸铁锂储能电池过充热失控的多参量特性分析及热失控抑制技术研究[J]. 高电压技术, 2024, 50(10): 4724-4733. DOI:10.13336/j.1003-6520.hve.20231441.
|
23 |
程志翔, 曹伟, 户波, 等. 储能用大容量磷酸铁锂电池热失控行为及燃爆传播特性[J]. 储能科学与技术, 2023, 12(3): 923-933. DOI: 10.19799/j.cnki.2095-4239.2022.0690.
|
|
CHENG Z X, CAO W, HU B, et al. Thermal runaway and explosion propagation characteristics of large lithium iron phosphate battery for energy storage station[J]. Energy Storage Science and Technology, 2023, 12(3): 923-933. DOI: 10.19799/j.cnki.2095-4239.2022.0690.
|
24 |
GOLUBKOV A W, FUCHS D, WAGNER J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes[J]. RSC Advances, 2014, 4(7): 3633-3642. DOI:10.1039/C3RA45748F.
|
25 |
马敬轩, 宋宇航, 石爽, 等. 基于气压信号突变探测的液冷型磷酸铁锂电池模组热失控预警研究[J]. 储能科学与技术, 2023, 12(7): 2246-2255. DOI: 10.19799/j.cnki.2095-4239.2023.0315.
|
|
MA J X, SONG Y H, SHI S, et al. Early warning of the thermal runaway of liquid-cooled LiFePO4 battery module based on the sudden change of air-pressure signal detection[J]. Energy Storage Science and Technology, 2023, 12(7): 2246-2255. DOI: 10.19799/j.cnki.2095-4239.2023.0315.
|
26 |
杨泽伟. 不同环境压力下锂离子电池电解液火灾烟雾特性研究[D]. 合肥: 中国科学技术大学, 2023. DOI: 10.27517/d.cnki.gzkju. 2023.001707.
|
|
YANG Z W. Study on smoke characteristics of electrolyte fire in lithium ion battery under different environmental pressures[D]. Hefei: University of Science and Technology of China, 2023. DOI: 10.27517/d.cnki.gzkju.2023.001707.
|
27 |
吴国忠, 邢永强, 吕妍, 等. 多孔介质内油水流动阻力系数实验分析[J]. 实验技术与管理, 2016, 33(10): 34-37. DOI: 10.16791/j.cnki.sjg.2016.10.010.
|
|
WU G Z, XING Y Q, LÜ Y, et al. Experimental analysis of resistance coefficient of oil and water flow in porous media[J]. Experimental Technology and Management, 2016, 33(10): 34-37. DOI: 10.16791/j.cnki.sjg.2016.10.010.
|
28 |
FAND R M, KIM B Y K, LAM A C C, et al. Resistance to the flow of fluids through simple and complex porous media whose matrices are composed of randomly packed spheres[J]. Journal of Fluids Engineering, 1987, 109(3): 268-273. DOI:10.1115/1.3242658.
|
29 |
WU J S, YU B M. A fractal resistance model for flow through porous media[J]. International Journal of Heat and Mass Transfer, 2007, 50(19/20): 3925-3932. DOI:10.1016/j.ijheatmasstransfer.2007.02.009.
|