储能科学与技术 ›› 2025, Vol. 14 ›› Issue (2): 613-623.doi: 10.19799/j.cnki.2095-4239.2024.0869

• 储能系统与工程 • 上一篇    下一篇

磷酸铁锂电池铝塑膜壳体绝缘失效触发热失控特性实验研究

黄怀宇1(), 黄思林2, 赵荣超1(), 肖质文2, 侯军辉2, 闫力玮2   

  1. 1.华南理工大学机械与汽车工程学院,广东 广州 510640
    2.厦门新能安科技有限公司,福建 厦门 361100
  • 收稿日期:2024-09-14 修回日期:2024-10-30 出版日期:2025-02-28 发布日期:2025-03-18
  • 通讯作者: 赵荣超 E-mail:2336380152@qq.com;merczhao@scut.edu.cn
  • 作者简介:黄怀宇(1999—),男,硕士研究生,研究方向为电池热失控,E-mail:2336380152@qq.com
  • 基金资助:
    广东省基础与应用基础研究基金(2024A1515010791)

Experimental study on thermal runaway characteristics triggered by insulation failure of aluminum-plastic film shell of lithium iron phosphate battery

Huaiyu HUANG1(), Silin HUANG2, Rongchao ZHAO1(), Zhiwen XIAO2, Junhui HOU2, Liwei YAN2   

  1. 1.South China University of Technology, Guangzhou 510640, Guangdong, China
    2.Xiamen Ampace Technology Limited, Xiamen 361100, Fujian, China
  • Received:2024-09-14 Revised:2024-10-30 Online:2025-02-28 Published:2025-03-18
  • Contact: Rongchao ZHAO E-mail:2336380152@qq.com;merczhao@scut.edu.cn

摘要:

储能系统发生绝缘失效会导致电池外壳与电极之间存在过高电压,危及电池安全。本研究针对储能系统中52 Ah磷酸铁锂电池铝塑膜外壳在高压下绝缘失效引发的热失控特性进行了实验研究。通过在电池正极与铝塑膜外壳之间施加不同幅值高压直流电诱发电池热失控,分析铝塑膜外壳在高压下绝缘失效诱发电池热失控的故障现象以及电热行为特性。实验结果表明:当施加500 V电压时,电池会发生热失控,其热失控过程经历了四个阶段:高压击穿铝塑膜阶段、熔融铝与负极过渡短路阶段、过充阶段和触发热失控阶段。借助工业计算机断层扫描成像(CT)、电子扫描显微镜(SEM)对热失控后电池形貌进行观察,发现其热失控最剧烈的区域是在铝塑膜外壳被电击穿的位置,且热失控不会扩散到整个电池。此外,在该电池正极与铝塑膜外壳之间施加100 V和300 V电压时铝塑膜不会被击穿,而施加400 V及以上时铝塑膜会被击穿并发生热失控,且电压幅值越高,热失控程度越剧烈。研究结果对提高储能系统安全性和电气绝缘设计具有指导意义。

关键词: 储能系统, 磷酸铁锂电池, 铝塑膜, 绝缘失效, 热失控

Abstract:

The insulation failure of an energy storage system can generate high voltage between the battery casing and the electrode, posing significant safety risks. This study experimentally investigates the thermal runaway characteristics of a 52 Ah lithium iron phosphate battery with an aluminum-plastic film casing under high voltage caused by insulation failure. Thermal runaway is induced by applying high-voltage direct current at varying amplitudes between the battery's positive electrode and the aluminum-plastic film shell. The resulting fault phenomena and the electrothermal behavior of the battery under these conditions are analyzed. Experimental findings reveal that when a 500 V voltage is applied, thermal runaway occurs. This process unfolds in four stages: high-voltage breakdown aluminum-plastic film stage, molten aluminum and negative electrode transition short circuit stage, overcharge stage, and trigger thermal runaway stage. The battery's condition after experiencing thermal runaway is examined using industrial computed tomography (CT) and scanning electron microscopy (SEM).The analysis reveals that the most severe thermal runaway occurs at the location where the aluminum-plastic film shell is electrically compromised. When a voltage of 100 V or 300 V is applied between the positive electrode of the battery and the aluminum-plastic film shell, no breakdown occurs in the film. However, when the voltage exceeds 400 V, the aluminum-plastic film breaks down, leading to thermal runaway. The higher the voltage amplitude, the more severe the thermal runaway degree. The research results are crucial for improving the safety of energy storage systems and electrical insulation designs.

Key words: energy storage system, lithium iron phosphate battery, aluminum-plastic film, insulation failure, thermal runaway

中图分类号: