1 |
曹文炅, 雷博, 史尤杰, 等. 韩国锂离子电池储能电站安全事故的分析及思考[J]. 储能科学与技术, 2020, 9(5): 1539-1547. DOI: 10.19799/j.cnki.2095-4239.2020.0127.
|
|
CAO W J, LEI B, SHI Y J, et al. Ponderation over the recent safety accidents of lithium-ion battery energy storage stations in South Korea[J]. Energy Storage Science and Technology, 2020, 9(5): 1539-1547. DOI: 10.19799/j.cnki.2095-4239.2020.0127.
|
2 |
牛腾腾, 黄人杰, 渠展展, 等. 1500 V锂离子电池簇电场分布仿真及绝缘风险分析[J]. 中国电机工程学报, 2024, 44(1): 377-384. DOI: 10.13334/j.0258-8013.pcsee.222335.
|
|
NIU T T, HUANG R J, QU Z Z, et al. Electric field distribution simulation and insulation risk analysis of 1500 V lithium-ion battery cluster[J]. Proceedings of the CSEE, 2024, 44(1): 377-384. DOI: 10.13334/j.0258-8013.pcsee.222335.
|
3 |
XU C S, OUYANG M G, LU L G, et al. Preliminary study on the mechanism of lithium ion battery pack under water immersion[J]. ECS Transactions, 2017, 77(11): 209. DOI:10.1149/ 07711.0209ecst.
|
4 |
MARROQUIN A, REHMAN A, MADANI A. High-voltage arc flash assessment and applications[J]. IEEE Transactions on Industry Applications, 2020, 56(3): 2205-2215. DOI:10.1109/TIA.2020.2980467.
|
5 |
GUO W, CAI J, JI H Q, et al. Arc ignition methods and combustion characteristics of small-current arc faults in high-voltage cables[J]. Fire, 2024, 7(10): 352. DOI:10.3390/fire7100352.
|
6 |
CHEN H, LIU Y W, QU Z Z, et al. Experimental research on thermal runaway characterization and mechanism induced by the shell insulation failure for LiFePO4 Lithium-ion battery[J]. Journal of Energy Storage, 2024, 84: 110735. DOI:10.1016/j.est. 2024.110735.
|
7 |
杨国均. 锂离子电池过充触发热失控及热传播的特性研究[D]. 武汉: 华中科技大学, 2022.
|
|
YANG G J. Study on the characteristics of thermal runaway and thermal propagation caused by overcharge of lithium-ion batteries[D]. Wuhan: Huazhong University of Science and Technology, 2022.
|
8 |
MAO N, ZHANG T, WANG Z R, et al. A systematic investigation of internal physical and chemical changes of lithium-ion batteries during overcharge[J]. Journal of Power Sources, 2022, 518: 230767. DOI:10.1016/j.jpowsour.2021.230767.
|
9 |
冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016.
|
|
FENG X N. Mechanism, modeling, prevention and control of thermal runaway of automotive lithium-ion power battery[D]. Beijing: Tsinghua University, 2016.
|
10 |
SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1): 81-100. DOI:10.1016/S0378-7753(02)00488-3.
|
11 |
程志翔, 曹伟, 户波, 等. 储能用大容量磷酸铁锂电池热失控行为及燃爆传播特性[J]. 储能科学与技术, 2023, 12(3): 923-933. DOI: 10.19799/j.cnki.2095-4239.2022.0690.
|
|
CHENG Z X, CAO W, HU B, et al. Thermal runaway and explosion propagation characteristics of large lithium iron phosphate battery for energy storage station[J]. Energy Storage Science and Technology, 2023, 12(3): 923-933. DOI: 10.19799/j.cnki.2095-4239.2022.0690.
|
12 |
张佳怡, 翁素婷, 王兆翔, 等. 石墨负极界面SEI膜与锂离子电池热失控[J]. 储能科学与技术, 2023, 12(7): 2105-2118. DOI: 10.19799/j.cnki.2095-4239.2023.0253.
|
|
ZHANG J Y, WENG S T, WANG Z X, et al. Solid electrolyte interphase(SEI)on graphite anode correlated with thermal runaway of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2105-2118. DOI: 10.19799/j.cnki.2095-4239.2023.0253.
|
13 |
许汉良, 伍斌, 陈仁鹏, 等. 添加分散剂和造孔剂制备高密度磷酸铁锂正极[J]. 电池, 2024, 54(1): 89-93. DOI: 10.19535/j.1001-1579.2024.01.020.
|
|
XU H L, WU B, CHEN R P, et al. Preparation of high-density lithium iron phosphate cathode by adding dispersant and pore-forming agent[J]. Dianchi(Battery Bimonthly), 2024, 54(1): 89-93. DOI: 10.19535/j.1001-1579.2024.01.020.
|
14 |
WANG H B, XU H, ZHANG Z L, et al. Fire and explosion characteristics of vent gas from lithium-ion batteries after thermal runaway: A comparative study[J]. eTransportation, 2022, 13: 100190. DOI:10.1016/j.etran.2022.100190.
|
15 |
BUGRYNIEC P J, DAVIDSON J N, CUMMING D J, et al. Pursuing safer batteries: Thermal abuse of LiFePO4 cells[J]. Journal of Power Sources, 2019, 414: 557-568. DOI:10.1016/j.jpowsour.2019.01.013.
|
16 |
KVASHA A, GUTIÉRREZ C, OSA U, et al. A comparative study of thermal runaway of commercial lithium ion cells[J]. Energy, 2018, 159: 547-557. DOI:10.1016/j.energy.2018.06.173.
|
17 |
JIA Z Z, QIN P, LI Z, et al. Analysis of gas release during the process of thermal runaway of lithium-ion batteries with three different cathode materials[J]. Journal of Energy Storage, 2022, 50: 104302. DOI:10.1016/j.est.2022.104302.
|
18 |
QI C, LIU Z Y, LIN C J, et al. Study on the thermal runaway characteristics and debris of lithium-ion batteries under overheating, overcharge, and extrusion[J]. Journal of Energy Storage, 2023, 72: 108821. DOI:10.1016/j.est.2023.108821.
|