储能科学与技术 ›› 2024, Vol. 13 ›› Issue (7): 2470-2482.doi: 10.19799/j.cnki.2095-4239.2024.0091
陈国贺1,2(), 吕培召1,2, 李孟涵1,2, 饶中浩1,2()
收稿日期:
2024-01-28
修回日期:
2024-02-08
出版日期:
2024-07-28
发布日期:
2024-07-23
通讯作者:
饶中浩
E-mail:202121301006@stu.hebut.edu.cn;raozhonghao@hebut.edu.cn
作者简介:
陈国贺(1998—),男,硕士研究生,研究方向为锂离子电池热失控传播及其抑制研究,E-mail:202121301006@stu.hebut.edu.cn;
基金资助:
Guohe CHEN1,2(), Peizhao LYU1,2, Menghan LI1,2, Zhonghao RAO1,2()
Received:
2024-01-28
Revised:
2024-02-08
Online:
2024-07-28
Published:
2024-07-23
Contact:
Zhonghao RAO
E-mail:202121301006@stu.hebut.edu.cn;raozhonghao@hebut.edu.cn
摘要:
锂离子电池以其能量密度高、生命周期长和自放电率低等优点,被广泛应用于电动汽车、储能电站等诸多领域。近年来,锂离子电池安全事故频发,尤其是高比能锂离子电池的安全性,是制约其发展的瓶颈问题。锂离子电池热失控机理、热失控传播特性、抑制热失控传播策略等是提高电池安全性的重要研究领域。因此,本文介绍了锂离子电池热失控的链式放热副反应导致电池内部产热、升温、产气及排气过程,分析了锂离子电池热失控过程热量在电池模组中的传播路径,总结了热失控触发方式、电池连接方式、电池排列方式、环境条件、电池正极材料、电池充电倍率、电池间距和电池荷电状态等因素对电池热失控传播特性的影响,重点分析了空气冷却、液冷板冷却、浸没式冷却、相变材料、高导热材料、隔热材料和多种热管理技术组合等策略抑制锂离子电池的热失控传播的效果。在此基础上,本文对锂离子电池热失控传播机理、仿真和抑制策略提供了方向和思路,对提升锂离子电池的安全性,促进电化学储能技术的发展与应用具有重要意义。
中图分类号:
陈国贺, 吕培召, 李孟涵, 饶中浩. 锂离子电池热失控传播特性及其抑制策略研究进展[J]. 储能科学与技术, 2024, 13(7): 2470-2482.
Guohe CHEN, Peizhao LYU, Menghan LI, Zhonghao RAO. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies[J]. Energy Storage Science and Technology, 2024, 13(7): 2470-2482.
1 | HAOYANG W, LEI G, YING J. The predicament of clean energy technology promotion in China in the carbon neutrality context: Lessons from China's environmental regulation policies from the perspective of the evolutionary game theory [J]. Energy Reports, 2022, 8: 4706-4723. |
2 | KORKUT P U, EMRE C A, TEVFIK K M, et al. Evaluation of the role of clean energy technologies, human capital, urbanization, and income on the environmental quality in the United States[J]. Journal of Cleaner Production, 2023, 402: doi: 10.1016/j.jclepro.136802. |
3 | LIU J L, DUAN Q L, MA M N, et al. Aging mechanisms and thermal stability of aged commercial 18650 lithium ion battery induced by slight overcharging cycling[J]. Journal of Power Sources, 2020, 445: doi: 10.1016/j.jpowsour.2019.227263. |
4 | ZHANG G, WEI X, CHEN S, et al. Research on the impact of high-temperature aging on the thermal safety of lithium-ion batteries[J]. Journal of Energy Chemistry, 2023, 87: 378-389. |
5 | HENRIKSEN M, VAAGSAETHER K, LUNDBERG J, et al. Explosion characteristics for Li-ion battery electrolytes at elevated temperatures[J]. Journal of Hazardous Materials, 2019, 371: 1-7. |
6 | HUANG Z, LIU J, ZHAI H, et al. Experimental investigation on the characteristics of thermal runaway and its propagation of large-format lithium ion batteries under overcharging and overheating conditions [J]. Energy, 2021, 233: doi: 10.1016/j.energy.2021.121103. |
7 | YU S Y, MAO Y, XIE J Y, et al. Thermal runaway chain reaction determination and mechanism model establishment of NCA-graphite battery based on the internal temperature[J]. Applied Energy, 2024, 353: doi: 10.1016/j.apenergy.2024.122097. |
8 | LI Y, LIU X, WANG L, et al. Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials [J]. Nano Energy, 2021, 85: doi: 10.1002/adma.202107326. |
9 | ZHANG Y J, WANG H W, LI W F, et al. Size distribution and elemental composition of vent particles from abused prismatic Ni-rich automotive lithium-ion batteries[J]. Journal of Energy Storage, 2019, 26: doi: 10.1016/j.est.2019.100991. |
10 | SONG L F, HUANG Z H, MEI W, et al. Thermal runaway propagation behavior and energy flow distribution analysis of 280 Ah LiFePO4 battery[J]. Process Safety and Environmental Protection, 2023, 170: 1066-1078. |
11 | LI H, CHEN H D, ZHONG G B, et al. Experimental study on thermal runaway risk of 18650 lithium ion battery under side-heating condition[J]. Journal of Loss Prevention in the Process Industries, 2019, 61: 122-129. |
12 | FENG X N, SUN J, OUYANG M G, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. Journal of Power Sources, 2015, 275: 261-273. |
13 | LI K J, XU C S, WANG H B, et al. Investigation for the effect of side plates on thermal runaway propagation characteristics in battery modules[J]. Applied Thermal Engineering, doi: 10.1016/j.applthermaleng. 2022.201.117774. |
14 | ZHANG Y, ZHAO H L, WANG G Q, et al. Effect of flame heating on thermal runaway propagation of lithium-ion batteries in confined space[J]. Journal of Energy Storage, 2024, 78: doi:10.1016/j.est.2024.110052. |
15 | WANG G Q, PING P, ZHANG Y, et al. Modeling thermal runaway propagation of lithium-ion batteries under impacts of ceiling jet fire[J]. Process Safety and Environmental Protection, 2023, 175: 524-540. |
16 | JIN C, SUN Y, WANG H, et al. Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling[J]. Applied Energy, 2022, 312: doi: 10.1016/j.apenergy.2022.118760. |
17 | LAI X, WANG S Y, WANG H B, et al. Investigation of thermal runaway propagation characteristics of lithium-ion battery modules under different trigger modes[J]. International Journal of Heat and Mass Transfer, 2021, 171: 15. |
18 | SCHÖBERL J, ANK M, SCHREIBER M, et al. Thermal runaway propagation in automotive lithium-ion batteries with NMC-811 and LFP cathodes: Safety requirements and impact on system integration[J]. eTransportation, 2024, 19: doi.org/10.14459/2023mp1717758. |
19 | HU J, LIU T, TANG Q Y, et al. Experimental investigation on thermal runaway propagation in the lithium ion battery modules under charging condition[J]. Applied Thermal Engineering, doi: 10.1016/j.applthermaleng. 2022. 211.118522. |
20 | ZHU M, ZHANG S, CHEN Y, et al. Experimental and analytical investigation on the thermal runaway propagation characteristics of lithium-ion battery module with NCM pouch cells under various state of charge and spacing[J]. Journal of Energy Storage, 2023, doi:10.1016/j.est.2023.108380. |
21 | LAMB J, ORENDORFF C, STEELE L, et al. Failure propagation in multi-cell lithium ion batteries[J]. Journal of Power Sources, 2015, 283: 517-523. |
22 | NIU H C, CHEN C X, JI D, et al. Thermal-runaway propagation over a linear cylindrical battery module[J]. Fire Technology, 2020, 56(6): 2491-2507. |
23 | XU C S, ZHANG F S, FENG X N, et al. Experimental study on thermal runaway propagation of lithium-ion battery modules with different parallel-series hybrid connections[J]. Journal of Cleaner Production, 2021, 284: doi: 10.1016/j.jclepro.124749. |
24 | HUANG Z H, ZHAO C P, LI H, ET al. Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes[J]. Energy, 2020, 205: 16. |
25 | ZHOU Z, LI M, ZHOU X, et al. Investigating thermal runaway characteristics and trigger mechanism of the parallel lithium-ion battery [J]. Applied Energy, 2023, 349: doi: 10.1016/j.apenergy.2023.121690. |
26 | FANG J, CAI J, HE X. Experimental study on the vertical thermal runaway propagation in cylindrical Lithium-ion batteries: Effects of spacing and state of charge [J]. Applied Thermal Engineering, 2021, 197: doi: 10.1016/j.energy.2020.117906. |
27 | ZHOU Z Z, ZHOU X D, JU X Y, et al. Experimental study of thermal runaway propagation along horizontal and vertical directions for LiFePO4 electrical energy storage modules [J]. Renewable Energy, 2023, 207: 13-26. |
28 | WANG H, WANG Q, ZHAO Z, et al. Thermal runaway propagation behavior of the Cell-to-Pack battery system [J]. Journal of Energy Chemistry, 2023, 84: 162-172. |
29 | JIN C, SUN Y, YAO J, et al. No thermal runaway propagation optimization design of battery arrangement for cell-to-chassis technology [J]. eTransportation, 2022, 14: 100199. |
30 | FU Y Y, LU S, SHI L, et al. Ignition and combustion characteristics of lithium ion batteries under low atmospheric pressure[J]. Energy, 2018, 161: 38-45. |
31 | LIU Y, NIU H, XU C, et al. Thermal runaway propagation in linear battery module under low atmospheric pressure [J]. Applied Thermal Engineering, 2022, 216: 119086. |
32 | LIU Y, NIU H, LIU J, et al. Layer-to-layer thermal runaway propagation of open-circuit cylindrical li-ion batteries: Effect of ambient pressure [J]. Journal of Energy Storage, 2022, 55: doi:10.1016/j.est.2022.105709. |
33 | JIA Z Z, HUANG Z H, ZHAI H J, et al. Experimental investigation on thermal runaway propagation of 18650 lithium-ion battery modules with two cathode materials at low pressure[J]. Energy, 2022, 251: doi: 10.1016/j.energy.2022.123925. |
34 | E J, YUE M, CHEN J, et al. Effects of the different air cooling strategies on cooling performance of a lithium-ion battery module with baffle [J]. Applied Thermal Engineering, 2018, 144: 231-241. |
35 | LI M, MA S, JIN H, et al. Performance analysis of liquid cooling battery thermal management system in different cooling cases[J]. Journal of Energy Storage, 2023, 72: doi:10.1016/j.est.2023.108651. |
36 | WANG G, KONG D, PING P, et al. Modeling venting behavior of lithium-ion batteries during thermal runaway propagation by coupling CFD and thermal resistance network [J]. Applied Energy, 2023, 334: doi: 10.1016/j.apenergy.2023.120660. |
37 | FU H, WANG J, LI L, et al. Numerical study of mini-channel liquid cooling for suppressing thermal runaway propagation in a lithium-ion battery pack [J]. Applied Thermal Engineering, 2023, 234: doi: 10.1016/j.energy.2023.121349. |
38 | LI X T, ZHOU Z Y, ZHANG M J, et al. A liquid cooling technology based on fluorocarbons for lithium-ion battery thermal safety[J]. Journal of Loss Prevention in the Process Industries, 2022, 78: doi: 10.1016/j.jlp.2022.104818. |
39 | LUO W Y, ZHAO L Y, CHEN M Y. The effect of PCM on mitigating thermal runaway propagation in lithium-ion battery modules[J]. Applied Thermal Engineering, 2024, 236: 121608. |
40 | JINYONG K, YANG C B, JOSHUA L, et al. A comprehensive numerical and experimental study for the passive thermal management in battery modules and packs[J]. Journal of the Electrochemical Society, 2022, 169(11): 110543. |
41 | KHAMIDI M, GLOVER C, FARHAN S A, et al. Effect of silica aerogel on the thermal conductivity of cement paste for the construction of concrete buildings in sustainable cities[Z]. WIT Transactions on the Built Environment, 2014, 137: 665-674. |
42 | MAHESH S P, JAE-HYEONG S, MOO-YEON L. A novel dielectric fluid immersion cooling technology for Li-ion battery thermal management[J]. Energy Conversion and Management, 2021, 229: doi: 10.1016/j.enconman.2020.113715. |
43 | OUYANG T, LIU B, XU P, et al. Electrochemical-thermal coupled modelling and multi-measure prevention strategy for Li-ion battery thermal runaway [J]. International Journal of Heat and Mass Transfer, 2022, 194: doi: 10.1016/j.ijheatmasstransfer. 2022.123082. |
44 | WENG J, OUYANG D, YANG X, et al. Alleviation of thermal runaway propagation in thermal management modules using aerogel felt coupled with flame-retarded phase change material[J]. Energy Conversion and Management, 2019, 200: doi: 10.1016/j.enconman.2019.112071. |
45 | YU H, MU X, ZHU Y, et al. Sandwich structured ultra-strong-heat-shielding aerogel/copper composite insulation board for safe lithium-ion batteries modules[J]. Journal of Energy Chemistry, 2023, 76: 438-447. |
46 | ZHAO G, WANG X, NEGNEVITSKY M, et al. An up-to-date review on the design improvement and optimization of the liquid-cooling battery thermal management system for electric vehicles [J]. Applied Thermal Engineering, 2023, 219: 119626. |
47 | WANG Z, ZHAO Q J, YIN B, et al. Influence of longitudinal wind on thermal runaway and fire behaviors of 18650 lithium-ion batteries in a restricted channel[J]. Journal of Power Sources, 2023, 567: 232974. |
48 | CHEN D, JIANG J, KIM G H, et al. Comparison of different cooling methods for lithium ion battery cells[J]. Applied Thermal Engineering, 2016, 94: 846-854. |
49 | MOHAMMED A H, ESMAEELI R, ALINIAGERDROUDBARI H, et al. Dual-purpose cooling plate for thermal management of prismatic lithium-ion batteries during normal operation and thermal runaway[J]. Applied Thermal Engineering, 2019, 160: 114106. |
50 | XU J, LAN C J, QIAO Y, et al. Prevent thermal runaway of lithium-ion batteries with minichannel cooling[J]. Applied Thermal Engineering, 2017, 110: 883-890. |
51 | KE Q, LI X, GUO J, et al. The retarding effect of liquid-cooling thermal management on thermal runaway propagation in lithium-ion batteries [J]. Journal of Energy Storage, 2022, 48: 104063. |
52 | PUNEET J, SRAVAN K B, JISHNU B. Coupled electrochemical-abuse-heat-transfer model to predict thermal runaway propagation and mitigation strategy for an EV battery module[J]. Journal of Energy Storage, 2021, 39: doi: 10.1016/j.est.2021.102619. |
53 | BAI P, XU R, LIU M, et al. Thermal runaway characteristics of LFP batteries by immersion cooling [J]. ACS Applied Energy Materials, 2023, 6(13): 7205-7211. |
54 | WU S, LAO L, WU L, et al. Effect analysis on integration efficiency and safety performance of a battery thermal management system based on direct contact liquid cooling[J]. Applied Thermal Engineering, 2022, 201: doi: 10.1016/j.applthermaleng.2021.117788. |
55 | ZHOU H L, DAI C H, LIU Y, et al. Experimental investigation of battery thermal management and safety with heat pipe and immersion phase change liquid[J]. Journal of Power Sources, 2020, 473: doi: 10.1016/j.jpowsour.2020.228545. |
56 | WANG Z, WANG J. Investigation of external heating-induced failure propagation behaviors in large-size cell modules with different phase change materials[J]. Energy, 2020, 204: 117946. |
57 | OUYANG D, WENG J W, HU J, et al. Experimental investigation of thermal failure propagation in typical lithium-ion battery modules[J]. Thermochimica Acta, 2019, 676: 205-213. |
58 | DAI X, KONG D, DU J, et al. Investigation on effect of phase change material on the thermal runaway of lithium-ion battery and exploration of flame retardancy improvement [J]. Process Safety and Environmental Protection, 2022, 159: 232-242. |
59 | HUANG Q, LI X, ZHANG G, et al. Innovative thermal management and thermal runaway suppression for battery module with flame retardant flexible composite phase change material [J]. Journal of Cleaner Production, 2022, 330: 129718. |
60 | CHEN M Y, ZHU M H, ZHANG S Y, et al. Experimental investigation on mitigation of thermal runaway propagation of lithium-ion battery module with flame retardant phase change materials[J]. Applied Thermal Engineering, 2023, 235: 121401. |
61 | LI Y M, WANG T Y, LI X X, et al. Experimental investigation on thermal management system with flame retardant flexible phase change material for retired battery module[J]. Applied Energy, 2022, 327: 120109. |
62 | VIRENDRA T, SURESH P M, SATYAM P, et al. Battery thermal runaway propagation time delay strategy using phase change material integrated with pyro block lining: Dual functionality battery thermal design[J]. Journal of Energy Storage, 2023, 65: 107253. |
63 | LIU Q, DENG Q, ZHAO R, et al. A novel flexible flame-retardant phase change materials with battery thermal management test[J]. Journal of Energy Storage, 2023, 70: 108077. |
64 | CAO J, LING Z, LIN S, et al. Thermochemical heat storage system for preventing battery thermal runaway propagation using sodium acetate trihydrate/expanded graphite [J]. Chemical Engineering Journal, 2022, 433:133536. |
65 | PING P, DAI X Y, KONG D, et al. Experimental study on nano-encapsulated inorganic phase change material for lithium-ion battery thermal management and thermal runaway suppression[J]. Chemical Engineering Journal, 2023, 463: 142401. |
66 | YUAN C, WANG Q, WANG Y, et al. Inhibition effect of different interstitial materials on thermal runaway propagation in the cylindrical lithium-ion battery module [J]. Applied Thermal Engineering, 2019, 153: 39-50. |
67 | LI Q, YANG C, SANTHANAGOPALAN S, et al. Numerical investigation of thermal runaway mitigation through a passive thermal management system [J]. Journal of Power Sources, 2019, 429: 80-88. |
68 | YANG C B, SUNDERLIN N, WANG W, et al. Compressible battery foams to prevent cascading thermal runaway in Li-ion pouch batteries[J]. Journal of Power Sources, 2022, 541: 231666. |
69 | YU Y, HUANG Z H, MEI W, et al. Preventing effect of different interstitial materials on thermal runaway propagation of large-format lithium iron phosphate battery module[J]. Journal of Energy Storage, 2023, 63: 107082. |
70 | LIU F, WANG J F, YANG N, et al. Experimental study on the alleviation of thermal runaway propagation from an overcharged lithium-ion battery module using different thermal insulation layers[J]. Energy, 2022, 257: 124768. |
71 | NIU H C, CHEN C X, LIU Y H, et al. Mitigating thermal runaway propagation of NCM 811 prismatic batteries via hollow glass microspheres plates[J]. Process Safety and Environmental Protection, 2022, 162: 672-683. |
72 | TANG J, WU X Y, REN J W, et al. Suppressing thermal runaway propagation of nickel-rich Lithium-ion battery modules using silica aerogel sheets[J]. Process Safety and Environmental Protection, 2023, 179: 199-207. |
73 | RUI X, FENG X, WANG H, et al. Synergistic effect of insulation and liquid cooling on mitigating the thermal runaway propagation in lithium-ion battery module [J]. Applied Thermal Engineering, 2021, 199: 117521. |
74 | KSHETRIMAYUM K S, YOON Y G, GYE H R, et al. Preventing heat propagation and thermal runaway in electric vehicle battery modules using integrated PCM and micro-channel plate cooling system[J]. Applied Thermal Engineering, 2019, 159: 113797. |
75 | OUYANG T, LIU B, WANG C, et al. Novel hybrid thermal management system for preventing Li-ion battery thermal runaway using nanofluids cooling [J]. International Journal of Heat and Mass Transfer, 2023, 201: 123652. |
76 | ZHANG W C, LIANG Z C, YIN X X, et al. Avoiding thermal runaway propagation of lithium-ion battery modules by using hybrid phase change material and liquid cooling[J]. Applied Thermal Engineering, 2021, 184: 116380. |
77 | LI L, XU C, CHANG R, et al. Thermal-responsive, super-strong, ultrathin firewalls for quenching thermal runaway in high-energy battery modules [J]. Energy Storage Materials, 2021, 40: 329-336. |
78 | BAUSCH B, FRANKL S, BECHER D, et al. Naturally-derived thermal barrier based on fiber-reinforced hydrogel for the prevention of thermal runaway propagation in high-energetic lithium-ion battery packs [J]. Journal of Energy Storage, 2023, 61: 106841. |
[1] | 曹勇, 杨大鹏, 朱清, 梁坤峰, 周训, 常艳琴. 大容量磷酸铁锂电池模组热失控研究[J]. 储能科学与技术, 2024, 13(7): 2462-2469. |
[2] | 李昌豪, 汪书苹, 杨献坤, 曾子琪, 周昕玥, 谢佳. 低温型锂离子电池中的非水电解质研究进展[J]. 储能科学与技术, 2024, 13(7): 2286-2299. |
[3] | 刘承鑫, 李梓衡, 陈泽宇, 李鹏祥, 陶庆一. 储能锂离子电池高温诱发热失控特性研究[J]. 储能科学与技术, 2024, 13(7): 2425-2431. |
[4] | 陆洋, 闫帅帅, 马骁, 刘誌, 章伟立, 刘凯. 低温锂电池电解液的研究与应用[J]. 储能科学与技术, 2024, 13(7): 2224-2242. |
[5] | 廖世接, 魏颖, 黄云辉, 胡仁宗, 许恒辉. 间二氟苯稀释剂稳定电极界面助力低温锂金属电池[J]. 储能科学与技术, 2024, 13(7): 2124-2130. |
[6] | 王美龙, 薛煜瑞, 胡文茜, 杜可遇, 孙瑞涛, 张彬, 尤雅. 低温磷酸铁锂电池用全醚高熵电解液的设计研究[J]. 储能科学与技术, 2024, 13(7): 2131-2140. |
[7] | 马国政, 陈金伟, 熊兴宇, 杨振忠, 周钢, 胡仁宗. SnSb-Li4Ti5O12 复合负极材料低温高倍率储锂特性研究[J]. 储能科学与技术, 2024, 13(7): 2107-2115. |
[8] | 王文涛, 魏一凡, 黄鲲, 吕国伟, 张思瑶, 唐昕雅, 陈泽彦, 林清源, 母志鹏, 王昆桦, 才华, 陈军. 低温锂离子电池测试标准及研究进展[J]. 储能科学与技术, 2024, 13(7): 2300-2307. |
[9] | 李征, 杨振忠, 王琼, 胡仁宗. 基于专利情报分析的锂离子电池用低温电解液的发展现状和研究进展[J]. 储能科学与技术, 2024, 13(7): 2317-2326. |
[10] | 程广玉, 刘新伟, 刘硕, 顾海涛, 王可. 调控电解液溶剂组分实现LCO/C低温18650电池循环寿命显著提升[J]. 储能科学与技术, 2024, 13(7): 2171-2180. |
[11] | 刘松燕, 王卫良, 彭世亮, 吕俊复. 兼顾高/低温环境性能的动力电池热管理系统设计[J]. 储能科学与技术, 2024, 13(7): 2181-2191. |
[12] | 李泽珩, 徐磊, 姚雨星, 闫崇, 翟喜民, 郝雪纯, 陈爱兵, 黄佳琦, 别晓非, 孙焕丽, 范丽珍, 张强. 电解液改善锂离子电池低温析锂研究进展[J]. 储能科学与技术, 2024, 13(7): 2192-2205. |
[13] | 肖鹏飞, 梅琳, 陈立宝. 多元包覆石墨复合负极材料的低温电化学储锂性能研究[J]. 储能科学与技术, 2024, 13(7): 2116-2123. |
[14] | 汪书苹, 杨献坤, 李昌豪, 曾子琪, 程宜风, 谢佳. 乙基膦酸二乙酯基阻燃宽温域电解液在锂离子电池中的应用[J]. 储能科学与技术, 2024, 13(7): 2161-2170. |
[15] | 李晨威, 徐世国, 余海峰, 于松民, 江浩. 镁掺杂改性LiMn0.5Fe0.5PO4/C正极材料与性能研究[J]. 储能科学与技术, 2024, 13(6): 1767-1774. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||