储能科学与技术 ›› 2024, Vol. 13 ›› Issue (7): 2462-2469.doi: 10.19799/j.cnki.2095-4239.2024.0108

• 储能测试与评价 • 上一篇    下一篇

大容量磷酸铁锂电池模组热失控研究

曹勇1(), 杨大鹏1, 朱清1,2, 梁坤峰2, 周训2, 常艳琴1()   

  1. 1.中航锂电(洛阳)有限公司,河南 洛阳 471003
    2.河南科技大学车辆与交通工程学院,河南 洛阳 471000
  • 收稿日期:2024-02-04 修回日期:2024-02-20 出版日期:2024-07-28 发布日期:2024-07-23
  • 通讯作者: 常艳琴 E-mail:yong.cao@calb.cn;yanqin.chang@calb.cn
  • 作者简介:曹勇(1982—),男,硕士,高级工程师,主要研究方向为电源系统设计开发、热安全,E-mail:yong.cao@calb.cn

Thermal runaway of large capacity lithium-iron phosphate battery pack

Yong CAO1(), Dapeng YANG1, Qing ZHU1,2, Kunfeng LIANG2, Xun ZHOU2, Yanqin CHANG1()   

  1. 1.China Lithium Battery Technology(Luoyang)Co. , Ltd, Luoyang 471003, Henan, China
    2.School of Vehicle and Traffic Engineering, Henan University of Science and Technology, Luoyang 471000, Henan, China
  • Received:2024-02-04 Revised:2024-02-20 Online:2024-07-28 Published:2024-07-23
  • Contact: Yanqin CHANG E-mail:yong.cao@calb.cn;yanqin.chang@calb.cn

摘要:

随着新能源产业的快速发展,锂离子电池被广泛应用在储能领域,其存在的安全问题不容忽视。本文针对锂离子电池模组在使用过程中的热安全问题,以大容量磷酸铁锂电池模组为研究对象,通过实验与数值模拟相结合的方式,研究热失控蔓延过程中电池模组表面的温度特性,搭建磷酸铁锂电池模组热失控仿真模型,分析不同厚度气凝胶垫对热失控蔓延的影响,及热失控过程中能量传递过程。结果表明:厚度为0.7 mm、1.2 mm的气凝胶垫均可抑制电池模组热失控蔓延;增大气凝胶垫厚度,可以有效降低被保护电池的峰值温度;加入气凝胶垫后的2#电池没有接收到足够的热量,内部发生不可逆反应放热,热失控在某一节点停止,电池内部未完全发生热失控。通过本研究可提高热失控仿真模型的准确度,在方案阶段进行热安全特性预判,提升产品的热安全性。

关键词: 安全, 热失控, 储能, 温度特性, 电池

Abstract:

The surge in the new energy industry has considerably escalated the utilization of lithium-ion batteries in energy storage systems, highlighting the imperative of addressing their safety concerns. This research focuses on the thermal safety issues of lithium-ion battery modules, particularly large-capacity lithium iron phosphate (LFP) variants. We conduct an integrated experimental and numerical simulation study to examine the surface temperature characteristics of these battery modules during thermal runaway propagation. A thermal runaway simulation model is established for LFP battery modules, which investigates the impact of aerogel pads of varying thicknesses on the mitigation of thermal runaway. Furthermore, it explores the energy transfer processes during thermal runaway events. The findings indicate that aerogel pads with thicknesses of 0.7 and 1.2 mm effectively inhibit the spread of thermal runaway within the battery modules. Increasing the thickness of the aerogel pads remarkably reduces the peak temperatures reached by the protected batteries. Upon the integration of the aerogel pad, the 2# battery received insufficient heat to sustain the internal irreversible reaction, thereby halting the thermal runaway at a specific node and preventing the complete occurrence of the reaction. This study enhances the accuracy of thermal runaway simulation models, facilitates the prediction of thermal safety characteristics at the planning stage, and contributes to the overall thermal safety of the products.

Key words: safety, thermal runaway, energy storage, temperature characteristics, battery

中图分类号: