储能科学与技术 ›› 2024, Vol. 13 ›› Issue (7): 2259-2269.doi: 10.19799/j.cnki.2095-4239.2024.0360
收稿日期:
2024-04-24
修回日期:
2024-05-08
出版日期:
2024-07-28
发布日期:
2024-07-23
通讯作者:
董晓丽
E-mail:23210220038@m.fudan.edu.cn;xldong@fudan.edu.cn
作者简介:
王浩天(2001—),男,硕士研究生,研究方向为低温电解液,E-mail:23210220038@m.fudan.edu.cn;
基金资助:
Haotian WANG(), Yonggang WANG, Xiaoli DONG()
Received:
2024-04-24
Revised:
2024-05-08
Online:
2024-07-28
Published:
2024-07-23
Contact:
Xiaoli DONG
E-mail:23210220038@m.fudan.edu.cn;xldong@fudan.edu.cn
摘要:
基于无机嵌入化合物电极材料的锂离子电池在低温(< -20 ℃)下会失去大部分容量,限制了其在电动汽车、航空航天和国防等关键领域的应用。与传统的无机嵌入化合物电极材料相比,具有氧化还原活性基团的有机电极材料通常表现出较快的电极反应动力学、较强的载流子适应性和优异的低温性能。同时,有机电极材料具有结构可设计性强、资源丰富、环境友好等优点,近年来在二次电池研究领域中受到了广泛关注。本文主要介绍了基于有机电极材料的低温电池体系的研究进展,根据不同氧化还原反应机理对有机电极材料进行了分类,阐述了有机电极材料的储能机制及其特点,结合近几年国内外研究介绍了有机物金属(离子)、非金属离子电池,有机物双离子电池等几类典型的低温有机物电池体系,分析了不同工作机理的有机电极材料在低温下的电化学行为,最后总结了有机电极材料在低温电池中的应用前景和挑战,旨在为未来低温有机物电池中有机电极材料的设计及其与电解液的适配性提供指导。
中图分类号:
王浩天, 王永刚, 董晓丽. 基于有机电极材料的低温电池研究进展[J]. 储能科学与技术, 2024, 13(7): 2259-2269.
Haotian WANG, Yonggang WANG, Xiaoli DONG. Advances in low-temperature organic batteries[J]. Energy Storage Science and Technology, 2024, 13(7): 2259-2269.
1 | KITTNER N, LILL F, KAMMEN D M. Energy storage deployment and innovation for the clean energy transition[J]. Nature Energy, 2017, 2(9): 17125. |
2 | XU K. A long journey of lithium: From the big Bang to our smartphones[J]. Energy & Environmental Materials, 2019, 2(4): 229-233. |
3 | ALBERTUS P, BABINEC S, LITZELMAN S, et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nature Energy, 2018, 3: 16-21. |
4 | YANG Y, LI P L, WANG N, et al. Fluorinated carboxylate ester-based electrolyte for lithium ion batteries operated at low temperature[J]. Chemical Communications, 2020, 56(67): 9640-9643. |
5 | HOLOUBEK J, YIN Y J, LI M Q, et al. Exploiting mechanistic solvation kinetics for dual-graphite batteries with high power output at extremely low temperature[J]. Angewandte Chemie (International Ed in English), 2019, 58(52): 18892-18897. |
6 | FAN X L, JI X, CHEN L, et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nature Energy, 2019, 4: 882-890. |
7 | HOLOUBEK J, LIU H D, WU Z H, et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature[J]. Nature Energy, 2021, 6: 303-313. |
8 | SUN T, SUN Q Q, YU Y, et al. Polypyrrole as an ultrafast organic cathode for dual-ion batteries[J]. eScience, 2021, 1(2): 186-193. |
9 | GU S, WU S F, CAO L J, et al. Tunable redox chemistry and stability of radical intermediates in 2D covalent organic frameworks for high performance sodium ion batteries[J]. Journal of the American Chemical Society, 2019, 141(24): 9623-9628. |
10 | GAN X, YANG Z, SONG Z. Solid-state batteries based on organic cathode materials[J]. Batteries Supercaps, 2023, 6(6): 1-24. |
11 | POIZOT P, GAUBICHER J, RENAULT S, et al. Opportunities and challenges for organic electrodes in electrochemical energy storage[J]. Chemical Reviews, 2020, 120(14): 6490-6557. |
12 | DONG X, GUO Z, GUO Z, et al. Organic batteries operated at -70 ℃[J]. Joule, 2018, 2(5): 902-913. |
13 | QIN J, LAN Q, LIU N, et al. A metal-free battery working at -80 ℃ [J]. Energy Storage Materials, 2020, 26: 585-592. |
14 | PAUDEL A, KUCHENA S F, WANG Y. A full metal-free battery operating under cold condition enabled by an antisolvent[J]. Electrochimica Acta, 2023, 469: 143227. |
15 | CHEN J W, PENG Y, YIN Y, et al. A desolvation-free sodium dual-ion chemistry for high power density and extremely low temperature[J]. Angewandte Chemie (International Ed in English), 2021, 60(44): 23858-23862. |
16 | KIM D J, YOO D J, OTLEY M T, et al. Rechargeable aluminium organic batteries[J]. Nature Energy, 2019, 4: 51-59. |
17 | LI M J, YANG J X, SHI Y Q, et al. Soluble organic cathodes enable long cycle life, high rate, and wide-temperature lithium-ion batteries[J]. Advanced Materials, 2022, 34(5): e2107226. |
18 | WANG D D, PENG H L, ZHANG S J, et al. Localized anion-cation aggregated aqueous electrolytes with accelerated kinetics for low-temperature zinc metal batteries[J]. Angewandte Chemie (International Ed in English), 2023, 62(50): e202315834. |
19 | GAN X T, SONG Z P. Small-molecule organic electrode materials for rechargeable batteries[J]. Science China Chemistry, 2023, 66(11): 3070-3104. |
20 | HONG Y H, MA Z, LI K X, et al. Research progress and perspectives on ultra-low temperature organic batteries[J]. Journal of Materials Chemistry A, 2023, 11(15): 7898-7923. |
21 | SONG Z P, ZHOU H S. Towards sustainable and versatile energy storage devices: An overview of organic electrode materials[J]. Energy & Environmental Science, 2013, 6(8): 2280-2301. |
22 | ZENG R H, XING L, QIU Y C, et al. Polycarbonyl(quinonyl) organic compounds as cathode materials for sustainable lithium ion batteries[J]. Electrochimica Acta, 2014, 146: 447-454. |
23 | HAN X Y, CHANG C X, YUAN L J, et al. Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials[J]. Advanced Materials, 2007, 19(12): 1616-1621. |
24 | QIN K Q, HOLGUIN K, MOHAMMADIROUDBARI M, et al. A conjugated tetracarboxylate anode for stable and sustainable Na-ion batteries[J]. Chemical Communications, 2021, 57(19): 2360-2363. |
25 | SAKAUSHI K, NICKERL G, WISSER F M, et al. An energy storage principle using bipolar porous polymeric frameworks[J]. Angewandte Chemie (International Ed in English), 2012, 51(31): 7850-7854. |
26 | WANG J D, LIU X L, JIA H, et al. A high-voltage organic framework for high-performance Na- and K-ion batteries[J]. ACS Energy Letters, 2022, 7(2): 668-674. |
27 | LÓPEZ-HERRAIZ M, CASTILLO-MARTÍNEZ E, CARRETERO-GONZÁLEZ J, et al. Oligomeric-Schiff bases as negative electrodes for sodium ion batteries: Unveiling the nature of their active redox centers[J]. Energy & Environmental Science, 2015, 8(11): 3233-3241. |
28 | HANYU Y, HONMA I. Rechargeable quasi-solid state lithium battery with organic crystalline cathode[J]. Scientific Reports, 2012, 2: 453. |
29 | LUO C, JI X, HOU S, et al. Azo compounds derived from electrochemical reduction of nitro compounds for high performance Li-ion batteries[J]. Advanced Materials, 2018, 30(23): e1706498. |
30 | LU Y, CAI Y C, ZHANG Q, et al. Insights into redox processes and correlated performance of organic carbonyl electrode materials in rechargeable batteries[J]. Advanced Materials, 2022, 34(22): 2104150. |
31 | LIANG Y L, ZHANG P, YANG S Q, et al. Fused heteroaromatic organic compounds for high-power electrodes of rechargeable lithium batteries[J]. Advanced Energy Materials, 2013, 3(5): 600-605. |
32 | SONG Z P, QIAN Y M, GORDIN M L, et al. Polyanthraquinone as a reliable organic electrode for stable and fast lithium storage[J]. Angewandte Chemie (International Ed in English), 2015, 54(47): 13947-13951. |
33 | NARAYAN R, BLAGOJEVIĆ A, MALI G, et al. Nanostructured poly(hydroquinonyl-benzoquinonyl sulfide)/multiwalled carbon nanotube composite cathodes: Improved synthesis and performance for rechargeable Li and Mg organic batteries[J]. Chemistry of Materials, 2022, 34 (14): 6378-6388. |
34 | LI M J, HICKS R P, CHEN Z F, et al. Electrolytes in organic batteries[J]. Chemical Reviews, 2023, doi: 10.1021/acs.chemrev.2c00374. |
35 | SENOH H, YAO M, SAKAEBE H, et al. A two-compartment cell for using soluble benzoquinone derivatives as active materials in lithium secondary batteries[J]. Electrochimica Acta, 2011, 56(27): 10145-10150. |
36 | SONG Z P, QIAN Y M, OTANI M, et al. Stable Li-organic batteries with nafion-based sandwich-type separators[J]. Advanced Energy Materials,2016, 6(7): 1-7 |
37 | ZHENG Y W, JI H Q, LIU J, et al. Surpassing the redox potential limit of organic cathode materials via extended p-π conjugation of dioxin[J]. Nano Letters, 2022, 22(8): 3473-3479. |
38 | YAO M, SENOH H, SAKAI T, et al. Redox active poly(N-vinylcarbazole) for use in rechargeable lithium batteries[J]. Journal of Power Sources, 2012, 202: 364-368. |
39 | SAKAUSHI K, HOSONO E, NICKERL G, et al. Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device[J]. Nature Communications, 2013, 4: 1485. |
40 | WANG M, TANG Y B. Dual-ion batteries: A review on the features and progress of dual-ion batteries[J]. Advanced Energy Materials, 2018, 8(19): doi:10.1002/aenm.201870088. |
41 | WANG H G, WANG Y, WU Q, et al. Recent developments in electrode materials for dual-ion batteries: potential alternatives to conventional batteries[J]. Materials Today, 2022, 52: 269-298. |
42 | HAGEMANN T, WINSBERG J, HÄUPLER B, et al. A bipolar nitronyl nitroxide small molecule for an all-organic symmetric redox-flow battery[J]. NPG Asia Materials, 2017, 9(1): e340. |
43 | NISHIDE H, IWASA S, PU Y J, et al. Organic radical battery: Nitroxide polymers as a cathode-active material[J]. Electrochimica Acta, 2004, 50(): 827-831. |
44 | NIGREY P J, MACINNES D, NAIRNS D P, et al. Lightweight rechargeable storage batteries using polyacetylene (CH) [sub X] as the cathode-active material[J]. Journal of the Electrochemical Society, 1981, 128(8): 1651. |
45 | ZHU L M, LEI A W, CAO Y L, et al. An all-organic rechargeable battery using bipolar polyparaphenylene as a redox-active cathode and anode[J]. Chemical Communications, 2013, 49(6): 567-569. |
46 | DONG X L, LIN Y X, LI P L, et al. High-energy rechargeable metallic lithium battery at -70 ℃ enabled by a cosolvent electrolyte[J]. Angew Chem Int Ed, 2019, doi: 10.1002/anie.201900266. |
47 | LI Y X, LIU L J, LU Y, et al. High-energy-density quinone-based electrodes with [Al(OTF)]2+ storage mechanism for rechargeable aqueous aluminum batteries[J]. Advanced functional materials, 2021(26): 31. |
48 | WANG N, DONG X L, WANG B L, et al. Zinc-organic battery with a wide operation-temperature window from -70 to 150 ℃[J]. Angewandte Chemie (International Ed in English), 2020, 59(34): 14577-14583. |
49 | FAN X L, WANG F, JI X, et al. A universal organic cathode for ultrafast lithium and multivalent metal batteries[J]. Angewandte Chemie (International Ed in English), 2018, 57(24): 7146-7150. |
50 | XU X, REN S Y, WU H, et al. Establishing exceptional durability in ultralow-temperature organic-sodium batteries via stabilized multiphase conversions[J]. Journal of the American Chemical Society, 2024, 146(2): 1619-1626. |
51 | LU Y, HOU X S, MIAO L C, et al. Cyclohexanehexone with ultrahigh capacity as cathode materials for lithium-ion batteries[J]. Angewandte Chemie (International Ed in English), 2019, 58(21): 7020-7024. |
52 | SUN T J, DU H H, ZHENG S B, et al. High power and energy density aqueous proton battery operated at -90 ℃[J]. Advanced Functional Materials, 2021, 31(16): 2010127. |
53 | WANG Y R, WANG C X, WANG W, et al. Organic hydronium-ion battery with ultralong life[J]. Acs Energy Lett, 2023: 1390-1396. |
54 | YAN L, QI Y E, DONG X L, et al. Ammonium-ion batteries with a wide operating temperature window from -40 to 80 ℃[J]. eScience, 2021, 1(2): 212-218. |
55 | QUE L F, WU J H, LAN Z, et al. Potassium-based dual-ion batteries operating at -60 ℃ enabled by co‐intercalation anode chemistry[J]. Advanced Materials, 2023, doi.org/10.1002/adma.202307592. |
56 | QIN J, LAN Q, LIU N, et al. A metal-free battery with pure ionic liquid electrolyte[J]. iScience, 2019, 15: 16-27. |
57 | SUN T J, DU H H, ZHENG S B, et al. Bipolar organic polymer for high performance symmetric aqueous proton battery[J]. Small Methods, 2021, 5(8): e2100367. |
[1] | 聂璐璐, 原立格. 智能电子控制系统在低温电池管理中的应用与优化[J]. 储能科学与技术, 2024, 13(7): 2432-2434. |
[2] | 刘青宜. 钠离子电池的储能机制与性能提升策略[J]. 储能科学与技术, 2024, 13(6): 1871-1873. |
[3] | 郭秀丽, 周小龙, 邹才能, 唐永炳. 水系双离子电池的研究进展与展望[J]. 储能科学与技术, 2024, 13(2): 462-479. |
[4] | 詹世英, 李欢欢, 胡方. 水系锌离子电容器正极材料的研究进展[J]. 储能科学与技术, 2023, 12(9): 2799-2810. |
[5] | 段赞, 李玲芳, 柳鹏辉, 肖东方. MXenes系储能材料的先进制备手段与储能机制综述[J]. 储能科学与技术, 2022, 11(3): 982-990. |
[6] | 周小龙, 欧学武, 刘齐荣, 唐永炳. 双离子电池研究进展[J]. 储能科学与技术, 2020, 9(2): 551-568. |
[7] | 刘梦云, 谷天天, 周敏, 王康丽, 程时杰, 蒋凯. 共轭羰基化合物作为钠/钾离子电池电极材料的研究进展[J]. 储能科学与技术, 2018, 7(6): 1171-1181. |
[8] | 钟明, 闫伟, 王佳超, 王婧, 李灵宏. 炭基锂离子电容器负极预嵌锂技术研究进展[J]. 储能科学与技术, 2018, 7(4): 639-645. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||