[1] 王松岑, 来小康, 程时杰. 大规模储能技术在电力系统中的应用前景分析[J]. 电力系统自动化, 2013, 37 (1):3-8. WANG C, LAI X, CHENG S. An analysis of prospects for application of large-scale energy storage technology in power systems[J]. Automation of Electric Power Systems, 2013, 37 (1):3-8.
[2] OWENS B. Batteries[J]. Nature, 2015, 526 (7575):S89.
[3] CHOU S L, DOU S X. Next-generation batteries[J]. Advanced Materials, 2017, 29 (48):1705871.
[4] HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries:Present and future[J]. Chemical Society Reviews, 2017, 46 (12):3529-3614.
[5] ZOU X, XIONG P, ZHAO J, et al. Recent research progress in non-aqueous potassium-ion batteries[J]. Physical Chemistry Chemical Physics, 2017, 19 (39):26495-26506.
[6] 李文挺, 安胜利, 邱新平. 钾离子电池关键材料的研究进展[J]. 储能科学与技术, 2018, 7 (3):365-375. LI W, AN S, QIU X. Research on key materials for potassium ion batteries[J]. Energy Storage Science and Technology, 2018, 7 (3):365-375.
[7] SCHON T B, MCALLISTER B T, LI P F, et al. The rise of organic electrode materials for energy storage[J]. Chemical Society Reviews, 2016, 45 (22):6345-6404.
[8] ZHAO Q, LU Y, CHEN J. Advanced organic electrode materials for rechargeable sodium-ion batteries[J]. Advanced Energy Materials, 2017, 7 (8):1601792.
[9] SANO H, SENOH H, YAO M, et al. Mg2+ storage in organic positive-electrode active material based on 2, 5-dimethoxy-1, 4-benzoquinone[J]. Chemistry Letters, 2012, 41 (12):1594-1596.
[10] HÄUPLER B, WILD A, SCHUBERT U S. Carbonyls:Powerful organic materials for secondary batteries[J]. Advanced Energy Materials, 2015, 5 (11):1402034.
[11] ZHAO Q, ZHU Z, CHEN J. Molecular engineering with organic carbonyl electrode materials for advanced stationary and redox flow rechargeable batteries[J]. Advanced Materials, 2017, 29 (48):1607007.
[12] HUSKINSON B, NAWAR S, GERHARDT M R, et al. Novel quinone-based couples for flow batteries[J]. ECS Transactions, 2013, 53 (7):101-105.
[13] 卢勇, 赵庆, 梁静, 等. 可充锂电池醌类化合物电极材料[J]. 物理化学学报, 2016, 32 (7):1593-1603. LU Y, ZHAO Q, LIANG J, TAO Z, et al J. Quinones as electrode materials for rechargeable lithium batteries[J]. Acta Physico-Chimica Sinica, 2016, 32 (7):1593-1603.
[14] WILLIAMS D L, BYRNE J J, DRISCOLL J S. A high energy density lithium/dichloroisocyanuric acid battery system[J]. J. Electrochem. Soc., 1969, 116:2-4
[15] GUO C, ZHANG K, ZHAO Q, et al. High-performance sodium batteries with the 9, 10-anthraquinone/CMK-3 cathode and an ether-based electrolyte[J]. Chemical Communications, 2015, 51 (50):10244-10247.
[16] ZHANG K, GUO C, ZHAO Q, et al. High-performance organic lithium batteries with an ether-based electrolyte and 9, 10-anthraquinone (AQ)/CMK-3 cathode[J]. Advanced Science, 2015, 2 (5):1500018.
[17] WANG H, HU P, YANG J, et al. Renewable-juglone-based high-performance sodium-ion batteries[J]. Advanced Materials, 2015, 27 (14):2348-2354.
[18] KIM H, KWON J E, LEE B, et al. High energy organic cathode for sodium rechargeable batteries[J]. Chemistry of Materials, 2015, 27 (21):7258-7264.
[19] ZHAO J, YANG J, SUN P, et al. Sodium sulfonate groups substituted anthraquinone as an organic cathode for potassium batteries[J]. Electrochemistry Communications, 2018, 86:34-37.
[20] WU X, JIN S, ZHANG Z, et al. Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries[J]. Science Advances, 2015, 1 (8):1500330.
[21] WU X, MA J, MA Q, et al. A spray drying approach for the synthesis of a Na2C6H2O4/CNT nanocomposite anode for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3 (25):13193-13197.
[22] WANG C, FANG Y, XU Y, et al. Manipulation of disodium rhodizonate:Factors for fast-charge and fast-discharge sodium-ion batteries with long-term cyclability[J]. Advanced Functional Materials, 2016, 26 (11):1777-1786.
[23] WANG Y, DING Y, PAN L, et al. Understanding the size-dependent sodium storage properties of Na2C6O6-based organic electrodes for sodium-ion batteries[J]. Nano Letters, 2016, 16 (5):3329-3334.
[24] ZHAO Q, WANG J, LU Y, et al. Oxocarbon salts for fast rechargeable batteries[J]. Angewandte Chemie International Edition, 2016, 55 (40):12528-12532
[25] WANG H, YUAN S, SI Z, et al. Multi-ring aromatic carbonyl compounds enabling high capacity and stable performance of sodium-organic batteries[J]. Energy & Environmental Science, 2015, 8 (11):3160-3165.
[26] LUO W, ALLEN M, RAJU V, et al. An organic pigment as a high-performance cathode for sodium-ion batteries[J]. Advanced Energy Materials, 2014, 4 (15):1400554.
[27] XING Z, JIAN Z, LUO W, et al. A perylene anhydride crystal as a reversible electrode for K-ion batteries[J]. Energy Storage Materials, 2016, 2:63-68.
[28] CHEN Y, LUO W, CARTER M, et al. Organic electrode for non-aqueous potassium-ion batteries[J]. Nano Energy, 2015, 18:205-211.
[29] RENAULT S, MIHALI V A, EDSTRÖM K, et al. Stability of organic Na-ion battery electrode materials:The case of disodium pyromellitic diimidate[J]. Electrochemistry Communications, 2014, 45:52-55.
[30] KIM D J, JUNG Y H, BHARATHI K K, et al. An aqueous sodium ion hybrid battery incorporating an organic compound and a Prussian blue derivative[J]. Advanced Energy Materials, 2014, 4 (12):1400133.
[31] DENG W, SHEN Y, QIAN J, et al. A perylene diimide crystal with high capacity and stable cyclability for Na-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7 (38):21095-21099.
[32] PARK Y, SHIN D S, WOO S H, et al. Sodium terephthalate as an organic anode material for sodium ion batteries[J]. Advanced Materials, 2012, 24 (26):3562-3567.
[33] LEI K, LI F, MU C, et al. High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes[J]. Energy & Environmental Science, 2017, 10 (2):552-557.
[34] CHOI A, KIM Y K, KIM T K, et al. 4, 4'-Biphenyldicarboxylate sodium coordination compounds as anodes for Na-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2 (36):14986-14993.
[35] ABOUIMRANE A, WENG W, ELTAYEB H, et al. Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells[J]. Energy & Environmental Science, 2012, 5 (11):9632-9638.
[36] WANG S, WANG L, ZHU Z, et al. All organic sodium-ion batteries with Na4C8H2O6[J]. Angewandte Chemie, 2014, 126 (23):6002-6006.
[37] DENG Q, PEI J, FAN C, et al. Potassium salts of para-aromatic dicarboxylates as the highly efficient organic anodes for low-cost K-ion batteries[J]. Nano Energy, 2017, 33:350-355.
[38] SONG Z, QIAN Y, ZHANG T, et al. Poly (benzoquinonyl sulfide) as a high-energy organic cathode for rechargeable Li and Na batteries[J]. Advanced Science, 2015, 2 (9):1500124.
[39] DENG W, LIANG X, WU X, et al. A low cost, all-organic Na-ion battery based on polymeric cathode and anode[J]. Scientific Reports, 2013, 3:2671.
[40] JIAN Z, LIANG Y, RODRÍGUEZ-PÉREZ I A, et al. Poly (anthraquinonyl sulfide) cathode for potassium-ion batteries[J]. Electrochemistry Communications, 2016, 71:5-8.
[41] QIN H, SONG Z P, ZHAN H, et al. Aqueous rechargeable alkali-ion batteries with polyimide anode[J]. Journal of Power Sources, 2014, 249:367-372.
[42] WANG H, YUAN S, MA D, et al. Tailored aromatic carbonyl derivative polyimides for high-power and long-cycle sodium-organic batteries[J]. Advanced Energy Materials, 2014, 4 (7):1301651.
[43] BANDA H, DAMIEN D, NAGARAJAN K, et al. A polyimide based all-organic sodium ion battery[J]. Journal of Materials Chemistry A, 2015, 3 (19):10453-10458.
[44] GU T, ZHOU M, LIU M, et al. A polyimide-MWCNTs composite as high performance anode for aqueous Na-ion batteries[J]. RSC Advances, 2016, 6 (58):53319-53323.
[45] XU F, XIA J, SHI W. Anthraquinone-based polyimide cathodes for sodium secondary batteries[J]. Electrochemistry Communications, 2015, 60:117-120.
[46] XU F, WANG H, LIN J, et al. Poly (anthraquinonyl imide) as a high capacity organic cathode material for Na-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4 (29):11491-11497.
[47] LI Z, ZHOU J, XU R, et al. Synthesis of three dimensional extended conjugated polyimide and application as sodium-ion battery anode[J]. Chemical Engineering Journal, 2016, 287:516-522.
[48] ANDRZEJAK M, MAZUR G, PETELENZ P. Quantum chemical results as input for solid state calculations:Charge transfer states in molecular crystals[J]. Journal of Molecular Structure:Theochem, 2000, 527 (1/3):91-102.
[49] LIANG Y, ZHANG P, YANG S, et al. Fused heteroaromatic organic compounds for high-power electrodes of rechargeable lithium batteries[J]. Advanced Energy Materials, 2013, 3 (5):600-605.
[50] WU Y, ZENG R, NAN J, et al. Quinone electrode materials for rechargeable lithium/sodium ion batteries[J]. Advanced Energy Materials, 2017, 1700278.
[51] TANG M, LI H, WANG E, et al. Carbonyl polymeric electrode materials for metal-ion batteries[J]. Chinese Chemical Letters, 2018, 2 (29):232-244.
[52] 李文俊, 褚赓, 李泓. 锂离子电池基础科学问题 (Ⅻ)-表征方法[J]. 储能科学与技术, 2014, 3 (6):642-667. LI W, ZHU G, LI H, et al. Fundamental scientific aspects of lithium batteries (Ⅻ)-Characterization techniques[J]. Energy Storage Science and Technology, 2014, 3 (6):642-667.
[53] 凌仕刚, 吴娇杨, 李泓. 锂离子电池基础科学问题 (XⅢ)-电化学测量方法[J]. 储能科学与技术, 2015, 4 (1):83-103. LING S, WU J, LI H, et al. Fundamental scientific aspects of lithium batteries (XⅡ)-Electrochemical measurement[J]. Energy Storage Science and Technology, 2015, 4 (1):83-103.
[54] 黄杰, 凌仕刚, 李泓. 锂离子电池基础科学问题 (ⅩⅣ)-计算方法[J]. 储能科学与技术, 2015, 4 (2):216-230. HUANG J, LING S, LI H. Fundamental scientific aspects of lithium batteries (ⅩⅣ)-Calculation methods[J]. Energy Storage Science and Technology, 2015, 4 (2):216-230. |