储能科学与技术 ›› 2018, Vol. 7 ›› Issue (6): 1159-1170.doi: 10.12028/j.issn.2095-4239.2018.0208
赵俊年, 武怿达, 詹元杰, 金周, 张华, 起文斌, 田丰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰
收稿日期:
2018-10-13
修回日期:
2018-10-15
出版日期:
2018-11-01
发布日期:
2018-11-01
通讯作者:
黄学杰,研究员,研究方向为锂离子电池及其关键材料,E-mail:xjhuang@iphy.ac.cn。
作者简介:
赵俊年(1992-),男,博士研究生,研究方向为锂金属电池和锂负极保护,E-mail:13501388124@163.com
ZHAO Junnian, WU Yida, ZHAN Yuanjie, JIN Zhou, ZHANG Hua, QI Wenbin, TIAN Feng, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie
Received:
2018-10-13
Revised:
2018-10-15
Online:
2018-11-01
Published:
2018-11-01
Contact:
10.12028/j.issn.2095-4239.2018.0208
摘要: 该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2018年8月1日至2018年9月30日上线的锂电池研究论文,共有3283篇,选择其中100篇加以评论。正极材料主要研究了层状材料的结构演变及表面包覆对层状和尖晶石材料循环寿命的影响。高容量的硅、锡基负极材料研究侧重于纳米材料、复合材料、黏结剂及反应机理研究,石墨负极的研究侧重于研究微结构对性能的影响,固态电解质、锂空电池、锂硫电池也有多篇,金属锂负极和全固态电池的研究论文增加很快。理论模拟工作包括材料体相、界面结构和输运性质,除了以材料为主的研究之外,针对电池的原位分析、电池模型的研究论文也有多篇。
中图分类号:
赵俊年, 武怿达, 詹元杰, 金周, 张华, 起文斌, 田丰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2018.8.1-2018.9.30)[J]. 储能科学与技术, 2018, 7(6): 1159-1170.
ZHAO Junnian, WU Yida, ZHAN Yuanjie, JIN Zhou, ZHANG Hua, QI Wenbin, TIAN Feng, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Aug. 1,2018 to Sep. 30,2018)[J]. Energy Storage Science and Technology, 2018, 7(6): 1159-1170.
[1] ARIYOSHI K, INOUE T, YAMADAZ Y. Quantitative analysis of large voltage hysteresis of lithium excess materials by backstitch charge and discharge method[J]. Journal of the Electrochemical Society, 2018, 165 (11):A2675-A2681. [2] KOMATSU H, MINATO T, MATSUNAGA T, et al. Site-selective analysis of nickel-substituted Li-rich layered material:Migration and role of transition metal at charging and discharging[J]. Journal of Physical Chemistry C, 2018, 122 (35):20099-20107. [3] KIM J, LEE J, MA H, et al. Controllable solid electrolyte interphase in nickel-rich cathodes by an electrochemical rearrangement for stable lithium-ion batteries[J]. Advanced Materials, 2018, 30 (5):doi:10.1002/adma.201704309. [4] PARK K J, JUNG H G, KUO L Y, et al. Improved cycling stability of LiNi0.90Co0.05Mn0.05O2 through microstructure modification by boron doping for Li-ion batteries[J]. Advanced Energy Materials, 2018, 8 (25):doi:10.1002/aenm.201801202. [5] ZHOU L, YIN Z, TIAN H, et al. Spinel-embedded and Li3PO4modified Li0.2Mn0.54Ni0.13Co0.13O2 cathode materials for high-performance Li-ion battries[J]. Applied Surface Science, 2018, 456:763-770. [6] KIM T, ONO L K, FLECK N, et al. Transition metal speciation as a degradation mechanism with the formation of a solid-electrolyte interphase (SEI) in Ni-rich transition metal oxide cathodes[J]. Journal of Materials Chemistry A, 2018, 6 (29):14449-14463. [7] HU E, YU X, LIN R, et al. Evolution of redox couples in Li-and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release[J]. Nature Energy, 2018, 3 (8):690-698. [8] LIU H, ZHANG X, HE X, et al. Truncated octahedral high-voltage spinel LiNi0.5Mn1.5O4 cathode materials for lithium ion batteries:Positive influences of Ni/Mn disordering and oxygen vacancies[J]. Journal of the Electrochemical Society, 2018, 165 (9):A1886-A1896. [9] ZHENG X, LIU W, QU Q, et al. Effectively stabilizing 5 V spinel LiNi0.5Mn1.5O4 cathode in organic electrolyte by polyvinylidene fluoride coating[J]. Applied Surface Science, 2018, 455:349-356. [10] KWON Y, LEE Y, KIM S O, et al. Conducting polymer coating on a high-voltage cathode based on soft chemistry approach toward improving battery performance[J]. ACS applied materials & interfaces, 2018, 10:29457-29466. [11] LUO Y, ZHANG Y, YAN L, et al. Octahedral and porous spherical ordered LiNi0.5Mn1.5O4 spinel:The role of morphology on phase transition behavior and electrode/electrolyte interfacial properties[J]. ACS applied materials & interfaces, 2018, doi:10.1021/acsami.8b11187. [12] NISAR U, AMIN R, ESSEHLI R, et al. Extreme fast charging characteristics of zirconia modified LiNi0.5Mn1.5O4 cathode for lithium ion batteries[J]. Journal of Power Sources, 2018, 396:774-781. [13] GORDON D, HUANG Q, MAGASINSKI A, et al. Mixed metal difluorides as high capacity conversion-type cathodes:Impact of composition on stability and performance[J]. Advanced Energy Materials, 2018, 8 (19):doi:10.1002/aenm.201800213. [14] LU W, ZHANG L, QIN Y, et al. Calendar and cycle life of lithium-ion batteries containing silicon monoxide anode[J]. Journal of the Electrochemical Society, 2018, 165 (10):A2179-A2183. [15] RYU J, CHEN T, BOK T, et al. Mechanical mismatch-driven rippling in carbon-coated silicon sheets for stress-resilient battery anodes[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-018-05398-9. [16] ABOUALI S, GARAKANI M A, KIM J K. Ultrafine SnO2 nanoparticles encapsulated in ordered mesoporous carbon framework for Li-ion battery anodes[J]. Electrochimica Acta, 2018, 284:436-443. [17] CHANG W J, KIM S H, HWANG J, et al. Controlling electric potential to inhibit solid-electrolyte interphase formation on nanowire anodes for ultrafast lithium-ion batteries[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-018-05986-9. [18] MISHRA K, GEORGE K, ZHOU X D. Submicron silicon anode stabilized by single-step carbon and germanium coatings for high capacity lithium-ion batteries[J]. Carbon, 2018, 138:419-426. [19] KIM S H, KIM Y S, BAEK W J, et al. Nanoscale electrical degradation of silicon-carbon composite anode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10 (29):24549-24553. [20] MOOCK D S, STEINMUELLER S O, WESSELY I D, et al. Surface functionalization of silicon, HOPG, and graphite electrodes:Toward an artificial solid electrolyte interface[J]. ACS Applied Materials & Interfaces, 2018, 10 (28):24172-24180. [21] CHENG Q, ZHANG Y. Multi-channel graphite for high-rate lithium ion battery[J]. Journal of the Electrochemical Society, 2018, 165 (5):A1104-A1109. [22] MAO C, WOOD M, DAVID L, et al. Selecting the best graphite for long-life, high-energy Li-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165 (9):A1837-A1845. [23] MORALES-UGARTE J E, BOLIMOWSKA E, ROUAULT H, et al. EIS and XPS investigation on SEI layer formation during first discharge on graphite electrode with a vinylene carbonate doped imidazolium based ionic liquid electrolyte[J]. Journal of Physical Chemistry C, 2018, 122 (32):18223-18230. [24] SHI B, KANG Y, XIE H, et al. In situ measurement and experimental analysis of lithium mass transport in graphite electrodes[J]. Electrochimica Acta, 2018, 284:142-148. [25] HABEDANK J B, KRAFT L, RHEINFELD A, et al. Increasing the discharge rate capability of lithium-ion cells with laser-structured graphite anodes:Modeling and simulation[J]. Journal of the Electrochemical Society, 2018, 165 (7):A1563-A1573. [26] HAFEZ A M, JIAO Y, SHI J, et al. Stable metal anode enabled by porous lithium foam with superior ion accessibility[J]. Advanced Materials, 2018, 30 (30):doi:10.1002/adma.201802156. [27] TU Z, CHOUDHURY S, ZACHMAN M J, et al. Fast ion transport at solid-solid interfaces in hybrid battery anodes[J]. Nature Energy, 2018, 3 (4):310-316. [28] CHAI J, CHEN B, XIAN F, et al. Dendrite-free lithium deposition via flexible-rigid coupling composite network for LiNi0.5Mn1.5O4/Li metal batteries[J]. Small, 2018, 14 (37):doi:10.1002/smll.201802244. [29] KIM C, SONG G, LUO L, et al. Stress-tolerant nanoporous germanium nanofibers for long cycle life lithium storage with high structural stability[J]. ACS Nano, 2018, 12 (8):8169-8176. [30] SMREKAR S, ZOLOFF MICHOFF M E, THOMAS J E, et al. On the effect of the carbonaceous substrate in the nucleation of Sn nanoparticles for Li-ion anodes:Experiments and first principles calculations[J]. Journal of Solid State Electrochemistry, 2018, 22 (6):1721-1733. [31] ZHANG C, LIU S, LI G, et al. Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal capacity, high rate lithium-metal anodes[J]. Advanced Materials, 2018, 30 (33):doi:10.1002/adma.201801328. [32] SUN B, FANG M, HUANG Z, et al. Robust current collector promoting the Li metal anode cycling with appropriate interspaces[J]. Journal of the Electrochemical Society, 2018, 165 (10):A2026-A2031. [33] GAO Y, WANG D, LI Y, et al. Salt-based organic-inorganic nanocomposites:Towards a stable lithium metal/Li10GeP2S12solid electrolyte interface[J]. Angewandte Chemie (International ed. in English), 2018, doi:10.1002/ange.201807304. [34] ALABOINA P K, RODRIGUES S, ROTTMAYER M, et al. In situ dendrite suppression study of nanolayer encapsulated Li metal enabled by zirconia atomic layer deposition[J]. ACS applied materials & interfaces, 2018, 10:32801-32808. [35] CHOI S, JUNG G, KIM J E, et al. Lithium intercalated graphite with preformed passivation layer as superior anode for Lithium ion batteries[J]. Applied Surface Science, 2018, 455:367-372. [36] CUI X, CHU Y, QIN L, et al. Stabilizing Li metal anodes through a novel self-healing strategy[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (8):11097-11104. [37] TAYLOR N J, STANGELAND-MOLO S, HASLAM C G, et al. Demonstration of high current densities and extended cycling in the garnet Li7La3Zr2O12 solid electrolyte[J]. Journal of Power Sources, 2018, 396:314-318. [38] ASANO T, SAKAI A, OUCHI S, et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries[J]. Advanced materials (Deerfield Beach, Fla.), 2018:e1803075-e1803075. [39] LI W, ZHANG S, WANG B, et al. Nanoporous adsorption effect on alteration of the Li+ diffusion pathway by a highly ordered porous electrolyte additive for high rate all-solid-state lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2018, 10 (28):23874-23882. [40] NOELLE R, ACHAZI A J, KAGHAZCHI P, et al. Pentafluorophenyl isocyanate as an effective electrolyte additive for improved performance of silicon-based lithium-ion full cells[J]. ACS Applied Materials & Interfaces, 2018, 10 (33):28187-28198. [41] PANG Q, LIANG X, KOCHETKOV I R, et al. Stabilizing lithium plating by a biphasic surface layer formed insitu[J]. Angewandte Chemie-International Edition, 2018, 57 (31):9795-9798. [42] JIAO S, REN X, CAO R, et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes[J]. Nature Energy, 2018, 3 (9):739-746. [43] ZHANG S S, FAN X, WANG C. An in-situ enabled lithium metal battery by plating lithium on a copper current collector[J]. Electrochemistry Communications, 2018, 89:23-26. [44] MILIEN M S, BEYER H, BEICHEL W, et al. Lithium bis (2,2,2-trifluoroethyl)phosphate Li[O2P (OCH2CF3)2]:A high voltage additive for LNMO/graphite cells[J]. Journal of the Electrochemical Society, 2018, 165 (11):A2569-A2576. [45] KAISER N, SPANNENBERGER S, SCHMITT M, et al. Ion transport limitations in all-solid-state lithium battery electrodes containing a sulfide-based electrolyte[J]. Journal of Power Sources, 2018, 396:175-181. [46] HAO F, MUKHERJEE P P. Mesoscale analysis of the electrolyte-electrode interface in all-solid-state Li-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165 (9):A1857-A1864. [47] NOMURA Y, YAMAMOTO K, HIRAYAMA T, et al. Quantitative operando visualization of electrochemical reactions and Li-ions in all-solid-state batteries by STEM-EELS with hyperspectral image analysis[J]. Nano letters, 2018, doi:10.1021/acs.nanolett.8b02587. [48] KOERVER R, ZHANG W, DE BIASI L, et al. Chemo-mechanical expansion of lithium electrode materials-on the route to mechanically optimized all-solid-state batteries[J]. Energy & Environmental Science, 2018, 11 (8):2142-2158. [49] KAWASOKO H, SHIRAKI S, SUZUKI T, et al. Extremely low resistance of Li3PO4 electrolyte/LiNi0.5Mn1.5O4 electrode interfaces[J]. ACS Applied Materials & Interfaces, 2018, 10 (32):27498-27502. [50] CHOI S-J, CHOI S H, BUI A D, et al. LiI-doped sulfide solid electrolyte:Enabling a high-capacity slurry-cast electrode by low-temperature post-sintering for practical all-solid-state lithium batteries[J]. ACS applied materials & interfaces, 2018, 10 (37):31404-31412. [51] KATO A, SUYAMA M, HOTEHAMA C, et al. High-temperature performance of all-solid-state lithium-metal batteries having Li/Li3PS4 interfaces modified with Au thin films[J]. Journal of the Electrochemical Society, 2018, 165 (9):A1950-A1954. [52] GEBRESILASSIE ESHETU G, JUDEZ X, LI C, et al. Ultrahigh performance all solid-state lithium sulfur batteries:Salt anion's chemistry-induced anomalous synergistic effect[J]. Journal of the American Chemical Society, 2018, 140 (31):9921-9933. [53] ABRAHAM A, HUANG J, SMITH P F, et al. Communication-demonstration and electrochemistry of a self-forming solid state rechargeable LiI (HPN)2 based Li/I2 battery[J]. Journal of the Electrochemical Society, 2018, 165 (10):A2115-A2118. [54] LI H, TAO Y, ZHANG C, et al. Dense graphene monolith for high volumetric energy density Li-S batteries[J]. Advanced Energy Materials, 2018, 8 (18):doi:10.1002/aenm.201703438. [55] XIN X, ITO K, DUTTA A, et al. Dendrite-free epitaxial growth of lithium-metal during charging in Li-O2 batteries[J]. Angewandte Chemie (International ed. in English), 2018, doi:10.1002/ange.201808154. [56] AGOSTINI M, LIM D H, SADD M, et al. Rational design of low cost and high energy lithium batteries through tailored fluorine-free electrolyte and nanostructured S/C composite[J]. Chemsuschem, 2018, 11 (17):2981-2986. [57] AGOSTINI M, HWANG J Y, KIM H M, et al. Minimizing the electrolyte volume in Li-S batteries:A step forward to high gravimetric energy density[J]. Advanced Energy Materials, 2018, 8 (26):doi:10.1002/aenm.201801560. [58] BERGER A, FREIBERG A T S, SIEBEL A, et al. The importance of chemical reactions in the charging process of lithium-sulfur batteries[J]. Journal of the Electrochemical Society, 2018, 165 (7):A1288-A1296. [59] WANG Y, LIN C-F, RAO J, et al. Electrochemically controlled solid electrolyte interphase layers enable superior Li-S batteries[J]. ACS Applied Materials & Interfaces, 2018, 10 (29):24554-24563. [60] CELIK K B, CENGIZ E C, SAR T, et al. In-situ wrapping of tin oxide nanoparticles by bacterial cellulose derived carbon nanofibers and its application as freestanding interlayer in lithium sulfide based lithium-sulfur batteries[J]. Journal of Colloid and Interface Science, 2018, 530:137-145. [61] LIU J, QIAN T, WANG M, et al. Use of tween polymer to enhance the compatibility of the Li/electrolyte interface for the high-performance and high-safety quasi-solid-state lithium-sulfur battery[J]. Nano Letters, 2018, 18 (7):4598-4605. [62] YAN J, YU J, DING B. Mixed ionic and electronic conductor for Li-metal anode protection[J]. Advanced Materials, 2018, 30 (7):doi:10.1002/adma.201705105. [63] YUN S, PARK S H, YEON J S, et al. Materials and device constructions for aqueous lithium-sulfur batteries[J]. Advanced Functional Materials, 2018, 28 (38):doi:10.1002/adfm.201707593. [64] LU L L, LU Y Y, XIAO Z J, et al. Wood-inspired high-performance ultrathick bulk battery electrodes[J]. Advanced Materials, 2018, 30 (20):doi:10.1002/adma.201706745. [65] BENITEZ A, DI LECCE D, ELIA G A, et al. A lithium-ion battery using a 3D-array nanostructured graphene-sulfur cathode and a silicon oxide-based anode[J]. Chemsuschem, 2018, 11 (9):1512-1520. [66] TRIPURANENI R, RAKSHIT S, NADIMPALLI S P V. In situ measurement of the effect of stress on the chemical diffusion coefficient of Li in high-energy-density electrodes[J]. Journal of the Electrochemical Society, 2018, 165 (10):A2194-A2202. [67] KARAKULINA O M, DEMORTIERE A, DACHRAOUI W, et al. In situ electron diffraction tomography using a liquid-electrochemical transmission electron microscopy cell for crystal structure determination of cathode materials for Li-ion batteries[J]. Nano Letters, 2018, doi:10.1021/acs.nanolett.8b02436. [68] HLUSHKOU D, REISING A E, KAISER N, et al. The influence of void space on ion transport in a composite cathode for all-solid-state batteries[J]. Journal of Power Sources, 2018, 396:363-370. [69] CHOI S, JEON M, AHN J, et al. Quantitative analysis of microstructures and reaction interfaces on composite cathodes in all-solid-state batteries using a three-dimensional reconstruction technique[J]. ACS Applied Materials & Interfaces, 2018, 10 (28):23740-23747. [70] CASTRO F C, DRAVID V P. Characterization of lithium ion battery materials with valence electron energy-loss spectroscopy[J]. Microscopy and Microanalysis, 2018, 24 (3):214-220. [71] MUELLER S, PIETSCH P, BRANDT B E, et al. Quantification and modeling of mechanical degradation in lithium-ion batteries based on nanoscale imaging[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-018-04477-1. [72] CHENG Q, WEI L, LIU Z, et al. Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-018-05289-z. [73] CHEN C C, MAIER J. Decoupling electron and ion storage and the path from interfacial storage to artificial electrodes[J]. Nature Energy, 2018, 3 (2):102-108. [74] MCOWEN D W, XU S, GONG Y, et al. 3D-printing electrolytes for solid-state batteries[J]. Advanced Materials, 2018, 30 (18):doi:10.1002/adma.201707132. [75] SHI F, PEI A, BOYLE D T, et al. Lithium metal stripping beneath the solid electrolyte interphase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115 (34):8529-8534. [76] SINGER A, ZHANG M, HY S, et al. Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging[J]. Nature Energy, 2018, 3 (8):641-647. [77] CARTER R, LOVE C T. Modulation of lithium plating in Li-ion batteries with external thermal gradient[J]. ACS Applied Materials & Interfaces, 2018, 10 (31):26328-26334. [78] OKAMOTO R, HAYASHI K, MATSUMOTO S, et al. Direct observation of Mn and Ni ordering in LiMn1.5Ni0.5O4 using atomic resolution scanning transmission electron microscopy[J]. Microscopy (Oxford, England), 2018, doi:10.1093/jmicro/dfy034. [79] PRITZL D, LANDESFEIND J, SOLCHENBACH S, et al. An analysis protocol for three-electrode Li-ion battery impedance spectra:Part Ⅱ. Analysis of a graphite anode cycled vs. LNMO[J]. Journal of the Electrochemical Society, 2018, 165 (10):A2145-A2153. [80] YAMANAKA T, ABE T, NISHIO K, et al. Diffusion of Li-deficient phases in large LiFePO4 single crystals during chemical delithiation dagger[J]. Journal of Materials Chemistry A, 2018, 6 (23):11005-11011. [81] GILBERT J A, MARONI V A, CUI Y, et al. Composition and impedance heterogeneity in oxide electrode cross-sections detected by Raman spectroscopy[J]. Advanced Materials Interfaces, 2018, 5 (9):doi:10.1002/admi.201701447. [82] NAM Y J, PARK K H, OH D Y, et al. Diagnosis of failure modes for all-solid-state Li-ion batteries enabled by three-electrode cells[J]. Journal of Materials Chemistry A, 2018, 6 (30):14867-14875. [83] RODRIGUES M T F, KALAGA K, TRASK S E, et al. Anode-dependent impedance rise in layered-oxide cathodes of lithium-ion cells[J]. Journal of the Electrochemical Society, 2018, 165 (9):A1697-A1705. [84] LIAO B, LI H, XU M, et al. Designing low impedance interface films simultaneously on anode and cathode for high energy batteries[J]. Advanced Energy Materials, 2018, 8 (22):doi:10.1002/aenm.201800802. [85] HILDEBRAND S, RHEINFELD A, FRIESEN A, et al. Thermal analysis of LiNi0.4Co0.2Mn0.4O2/mesocarbon microbeads cells and electrodes:State-of-charge and state-of-health influences on reaction kinetics[J]. Journal of the Electrochemical Society, 2018, 165 (2):A104-A117. [86] LI X, QIAO Y, GUO S, et al. Direct visualization of the reversible O2-/O- redox process in Li-rich cathode materials[J]. Advanced Materials, 2018, 30 (14):doi:10.1002/adma.201705197. [87] LEUNG K, PEARSE A J, TALIN A A, et al. Kinetics-controlled degradation reactions at crystalline LiPON/LixCoO2 and crystalline LiPON/Li-metal interfaces[J]. Chemsuschem, 2018, 11 (12):1956-1969. [88] CAMACHO-FORERO L E, BALBUENA P B. Exploring interfacial stability of solid-state electrolytes at the lithium-metal anode surface[J]. Journal of Power Sources, 2018, 396:782-790. [89] OH K, CHANG D, LEE B, et al. Native defects in Li10GeP2S12 and their effect on lithium diffusion[J]. Chemistry of Materials, 2018, 30 (15):4995-5004. [90] SICOLO S, KALCHER C, SEDLMAIER S J, et al. Diffusion mechanism in the superionic conductor Li4PS4I studied by first-principles calculations[J]. Solid State Ionics, 2018, 319:83-91. [91] WOOD K N, STEIRER K X, HAFNER S E, et al. Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-018-04762-z. [92] BENNETT J W, JONES D, HUANG X, et al. Dissolution of complex metal oxides from first-principles and thermodynamics:Cation removal from the (001) Surface of Li (Ni1/3Mn1/3Co1/3)O2[J]. Environmental Science & Technology, 2018, 52 (10):5792-5802. [93] MOTOYAMA M, EJIRI M, YAMAMOTO T, et al. In situ scanning electron microscope observations of Li plating/stripping reactions with Pt current collectors on LiPON electrolyte[J]. Journal of the Electrochemical Society, 2018, 165 (7):A1338-A1347. [94] SINGLE F, LATZ A, HORSTMANN B. Identifying the mechanism of continued growth of the solid-electrolyte interphase[J]. Chemsuschem, 2018, 11 (12):1950-1955. [95] GUPTA A, KAZYAK E, CRAIG N, et al. Evaluating the effects of temperature and pressure on Li/PEO-LiTFSI interfacial stability and kinetics[J]. Journal of the Electrochemical Society, 2018, 165 (11):A2801-A2806. [96] WANG L P, ZHANG X D, WANG T S, et al. Ameliorating the interfacial problems of cathode and solid-state electrolytes by interface modification of functional polymers[J]. Advanced Energy Materials, 2018, 8 (24):doi:10.1002/aenm.201801528. [97] ALEXANDER G V, PATRA S, VALIYAVEETIL S, et al. Electrodes-electrolyte interfacial engineering for realizing room temperature lithium metal battery based on garnet structured solid fast Li+ conductors[J]. Journal of Power Sources, 2018, 396:764-773. [98] THOMAS S, NAM E B, LEE S U. Atomistic dynamics investigation of the thermo-mechanical properties and Li diffusion kinetics in psi-graphene for LIB anode material[J]. ACS applied materials & interfaces, 2018, doi:10.1021/acsami.8b11476.. [99] FOROUZAN M M, MAZZEO B A, WHEELER D R. Modeling the effects of electrode microstructural heterogeneities on Li-ion battery performance and lifetime[J]. Journal of the Electrochemical Society, 2018, 165 (10):A2127-A2144. [100] MURALIDHARAN A, CHAUDHARI M I, PRATT L R, et al. Molecular dynamics of lithium ion transport in a model solid electrolyte interphase[J]. Scientific Reports, 2018, 8:doi:10.1038/s41598-018-28869-x. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||