储能科学与技术 ›› 2020, Vol. 9 ›› Issue (2): 551-568.doi: 10.19799/j.cnki.2095-4239.2019.0252
周小龙, 欧学武, 刘齐荣, 唐永炳
收稿日期:
2019-11-05
修回日期:
2019-11-20
出版日期:
2020-03-05
发布日期:
2019-11-20
通讯作者:
唐永炳
基金资助:
ZHOU Xiaolong, OU Xuewu, LIU Qirong, TANG Yongbing
Received:
2019-11-05
Revised:
2019-11-20
Online:
2020-03-05
Published:
2019-11-20
Contact:
Yongbing TANG
摘要:
作为清洁能源的重要载体,传统摇椅式锂离子电池(LIBs)由于具有循环寿命长、无记忆效应等特点,已广泛应用于消费类电子产品、电动汽车、储能电站等领域。然而,由于锂、钴等资源有限且分布极为不均,以及动力电池和蓄能电站等行业的快速发展,促使人们发展高效、低成本、安全可靠的新型储能技术,例如非锂阳离子(Na+、K+、Mg2+、Ca2+、Zn2+、Al3+等)二次电池、锌空电池、双离子电池(DIBs)等。其中,DIBs作为一种阴、阳离子共同参与电化学反应且正极主要依靠阴离子插层石墨类材料的新型储能技术,赋予了新型储能系统正负极材料更多的可选择性。此外,DIBs具有工作电压高、温域宽、安全性好、成本低、环境友好等优点,在规模化储能等领域具有良好的应用前景。本文首先简要地回顾了DIBs的发展历程,进一步从DIBs的工作原理着手,系统阐述了其研究现状,并对其所面临的挑战进行了展望。
中图分类号:
周小龙, 欧学武, 刘齐荣, 唐永炳. 双离子电池研究进展[J]. 储能科学与技术, 2020, 9(2): 551-568.
ZHOU Xiaolong, OU Xuewu, LIU Qirong, TANG Yongbing. Research progress on dual-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 551-568.
1 | WU H B , LOU X W . Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges[J]. Sci. Adv., 2017, 3: 9252. |
2 | DUNN B , KAMATH H , TARASCON J M . Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334: 928-935. |
3 | SCHMUCH R , WAGNER R , HORPEL G , et al . Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nat. Energy, 2018, 3: 267-278. |
4 | ALBERTUS P , BABINEC S , LITZELMAN S , et al . Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nat. Energy, 2018, 3: 16-21. |
5 | ASSAT G , TARASCON J M . Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries[J]. Nat. Energy, 2018, 3: 373-386. |
6 | YANG S , ZHANG F , DING H , et al . Lithium metal extraction from seawater[J]. Joule, 2018, 2: 1648-1651. |
7 | OZAWA K . Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system[J]. Solid State Ionics, 1994, 69: 212-221. |
8 | CHEN X , LI H R , SHEN X , et al . The origin of the reduced reductive stability of ion-solvent complexes on alkali and alkaline earth metal anodes[J]. Angew. Chem. Int. Ed., 2018, 130: 16885-16889. |
9 | TURCHENIUK K , BONDAREV D , SINGHAL V , et al . Ten years left to redesign lithium-ion batteries[J]. Nature, 2018, 559: 467-470. |
10 | SEEL J , DAHN J . Electrochemical intercalation of PF6 into graphite[J]. J. Electrochem. Soc., 2000, 147: 892-898. |
11 | PLACKE T , FROMM O , LUX S F, et al . Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-Ion cells[J]. J. Electrochem. Soc., 2012, 159: A1755-A1765. |
12 | ZHOU X , LIU Q , JIANG C , et al . Beyond conventional batteries: strategies towards low-cost dual-ion batteries with high performance[J]. Angew. Chem. Int. Ed., 2019. |
13 | YABUUCHI N , KUBOTA K , DAHBI M , et al . Research development on sodium-ion batteries[J]. Chem. Rev., 2014, 114: 11636-11682. |
14 | BENSON T R , COBLE M A , RYTUBA J J , et al . Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins[J]. Nat. Commun., 2017, 8: 207. |
15 | HOU H S , QIU X Q , WEI W F , et al . Carbon anode materials for advanced sodium-ion batteries[J]. Adv. Energy Mater., 2017, 7: 1602898. |
16 | BERTHELOT R , CARLIER D , DELMAS C . Electrochemical investigation of the P2-Na x CoO2 phase diagram[J]. Nat. Mater., 2011, 10: 74-80. |
17 | YANG X M , ZHANG J L , WANG Z G , et al . Carbon-supported nickel selenide hollow nanowires as advanced anode materials for sodium-ion batteries[J]. Small, 2018, 14: 1702669. |
18 | EFTEKHARI A , JIAN Z L , JI X L . Potassium secondary batteries[J]. ACS. Appl. Mater. Interfaces, 2017, 9: 4404-4419. |
19 | XUE L G , LI Y T , GAO H C , et al . Low-cost high-energy potassium cathode[J]. J. Am. Chem. Soc., 2017, 139: 2164-2167. |
20 | JI X L , LEE K T, NAZAR L F . A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nat. Mater., 2009, 8: 500-506. |
21 | LIU X , HUANG J Q , ZHANG Q , et al . Nanostructured metal oxides and sulfides for lithium-sulfur batteries[J]. Adv. Mater., 2017, 29: 1601759. |
22 | FANG R P , ZHAO S Y , SUN Z H , et al . More reliable lithium-sulfur batteries: Status, solutions and prospects[J]. Adv. Mater., 2017, 29:1606823. |
23 | LYU Z Y, ZHOU Y , DAI W R , et al . Recent advances in understanding of the mechanism and control of Li2O2 formation in aprotic Li-O2 batteries[J]. Chem. Soc. Rev., 2017, 46: 6046-6072. |
24 | ZHANG P , ZHAO Y , ZHANG X B . Functional and stability orientation synthesis of materials and structures in aprotic Li-O2 batteries[J]. Chem. Soc. Rev., 2018, 47: 2921-3004. |
25 | LI Y G , DAI H J . Recent advances in zinc-air batteries[J]. Chem. Soc. Rev., 2014, 43: 5257-5275. |
26 | NIU W H , PAKHIRA S , MARCUS K , et al . Apically dominant mechanism for improving catalytic activities of N-doped carbon nanotube arrays in rechargeable zinc-air battery[J]. Adv. Energy Mater., 2018, 8: 1800480 |
27 | WANG M , TANG Y B . A review on the features and progress of dual-ion batteries[J]. Adv. Energy Mater., 2018, 8: 1703320. |
28 | ZHANG X L , TANG Y B , ZHANG F , et al . A novel aluminum-graphite dual-ion battery[J]. Adv. Energy Mater., 2016, 6: 1502588. |
29 | WANG M , JIANG C , ZHANG S , et al . Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage[J]. Nat. Chem., 2018, 10: 667-672. |
30 | SHENG M H , ZHANG F , JI B F , et al . A novel tin-graphite dual-ion battery based on sodium-ion electrolyte with high energy density[J]. Adv. Energy Mater., 2017, 7: 1601963. |
31 | ZHANG M , SONG X , OU X, et al . Rechargeable batteries based on anion intercalation graphite cathodes[J]. Energy Storage Mater., 2019, 16: 65-84. |
32 | READ J A , CRESCE A V , ERVIN M H , et al . Dual-graphite chemistry enabled by a high voltage electrolyte[J]. Energy Environ. Sci., 2014, 7: 617-620. |
33 | PLACKE T , HECKMANN A , SCHMUCH R , et al . Perspective on performance, cost, and technical challenges for practical dual-ion batteries[J]. Joule, 2018, 2: 1-23. |
34 | YANG C , CHEN J , JI X , et al . Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite[J]. Nature, 2019, 569: 245-250. |
35 | WU X , XU Y , ZHANG C , et al . Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte[J]. J. Am. Chem. Soc., 2019, 141: 6338-6344. |
36 | JI B , ZHANG F , SONG X , et al . A novel potassium-ion-based dual-ion battery[J]. Adv. Mater., 2017, 29: 1700519. |
37 | MIYOSHI S , AKBAY T , KURIHARA T , et al . Fast diffusivity of PF6 – anions in graphitic carbon for a dual-carbon rechargeable battery with superior rate property[J]. J. Phys. Chem. C, 2016, 120: 22887-22894. |
38 | HECKMANN A , THIENENKAMP J , BELTROP K , et al . Towards high-performance dual-graphite batteries using highly concentrated organic electrolytes[J]. Electrochim. Acta, 2018, 260: 514-525. |
39 | RüDORFF W , HOFMANN U . Über graphitsalze[J]. Z. Anorg. Allg. Chem., 1938, 238: 1-50. |
40 | DAHN J , SEEL J . Energy and capacity projections for practical dual‐graphite cells[J]. J. Electrochem. Soc., 2000, 147: 899-901. |
41 | PLACKE T , SCHMUELLING G , KLOEPSCH R , et al . In situ X-ray diffraction studies of cation and anion intercalation into graphitic carbons for electrochemical energy storage applications[J]. Z. Anorg. Allg. Chem., 2014, 640: 1996-2006. |
42 | ROTHERMEL S , MEISTER P , SCHMUELLING G , et al . Dual-graphite cells based on the reversible intercalation of bis (trifluoromethanesulfonyl) imide anions from an ionic liquid electrolyte[J]. Energy Environ. Sci., 2014, 7: 3412-3423. |
43 | LIN M C , GONG M , LU B , et al . An ultrafast rechargeable aluminium-ion battery[J]. Nature, 2015, 520: 325-328. |
44 | FAN L , LIU Q , CHEN S , et al . Potassium-based dual ion battery with dual-graphite electrode[J]. Small, 2017, 13: 1701011. |
45 | CHEN G , ZHANG F , ZHOU Z , et al . A flexible dual‐Ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability[J]. Adv. Energy Mater., 2018, 8: 1801219. |
46 | ZABEL H , SOLIN S A , HWANG D M . Graphite intercalation compounds I : structure and dynamics [M]. New York: Springer-Verlag, 1990. |
47 | INAGAKI M . Applications of graphite-intercalation compounds[J]. J. Mater. Res., 1989, 4: 1560-1568. |
48 | MCCULLOUGH F P , BEALE A F . Electrode for use in secondary electrical energy storage devices—Avoids any substantial change in dimension during repeated electrical charge and discharge cycles: US4865931-A[P]. 1989. |
49 | CARLIN R T , HUGH C , FULLER J , et al . Dual intercalating molten electrolyte batteries[J]. J. Electrochem. Soc., 1994, 141: L73-L76. |
50 | ZHANG E , CAO W , WANG B , et al . A novel aluminum dual-ion battery[J]. Energy Storage Mater., 2018, 11: 91-99. |
51 | SANTHANAM R , NOEL M . Electrochemical intercalation of ionic species of tetrabutylammonium perchlorate on graphite electrodes. A potential dual-intercalation battery system[J]. J. Power Sources, 1995, 56: 101-105. |
52 | ÖZMEN-MONKUL B , LERNER M M . The first graphite intercalation compounds containing tris-(pentafluoroethyl)-trifluorophosphate[J]. Carbon., 2010., 48: 3205-3210. |
53 | WANG S , JIAO S , SONG WL , et al . A novel dual-graphite aluminum-ion battery[J]. Energy Storage Mater., 2018, 12: 119-127. |
54 | ZHANG Z , HU X , ZHOU Y , et al . Aqueous rechargeable dual-ion battery based on fluoride ion and sodium ion electrochemistry[J]. J. Mater. Chem. A, 2018, 6: 8244-8250. |
55 | SANTHANAM R , NOEL M . Effect of solvents on the intercalation/de-intercalation behaviour of monovalent ionic species from non-aqueous solvents on polypropylene-graphite composite electrode[J]. J. Power Sources, 1997, 66: 47-54. |
56 | MäRKLE W , TRAN N , GOERS D , et al . The influence of electrolyte and graphite type on the PF6 - intercalation behaviour at high potentials[J]. Carbon, 2009, 47: 2727-2732. |
57 | JI B , ZHANG F , WU N , et al . A dual‐carbon battery based on potassium‐ion electrolyte[J]. Adv. Energy Mater., 2017, 7:1700920. |
58 | WU X , XU Y , ZHANG C , et al . Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte[J]. J. Am. Chem. Soc., 2019, 141: 6338-6344. |
59 | XU K . Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chem. Rev., 2004, 104: 4303-4418. |
60 | QUARTARONE E , MUSTARELLI P . Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives[J]. Chem. Soc. Rev., 2011, 40: 2525-2540. |
61 | XU K . Electrolytes and interphases in Li-ion batteries and beyond[J]. Chem. Rev., 2014, 114: 11503-11618. |
62 | GOODENOUGH J B . Evolution of strategies for modern rechargeable batteries[J]. Acc. Chem. Res., 2012, 46: 1053-1061. |
63 | GAO J , YOSHIO M , QI L , et al . Solvation effect on intercalation behaviour of tetrafluoroborate into graphite electrode[J]. J. Power Sources, 2015, 278: 452-457. |
64 | GAO J , TIAN S , QI L , et al . Hexafluorophosphate intercalation into graphite electrode from gamma-butyrolactone solutions in activated carbon/graphite capacitors[J]. J. Power Sources, 2015, 297: 121-126. |
65 | MäRKLE W , COLIN JF , GOERS D , et al . In situ X-ray diffraction study of different graphites in a propylene carbonate based electrolyte at very positive potentials[J]. Electrochim. Acta., 2010, 55: 4964-4969. |
66 | HAYES R , WARR G G , R ATKIN et al . Structure and nanostructure in ionic liquids[J]. Chem. Rev., 2015, 115: 6357-6426. |
67 | XIANG J , WU F , CHEN R , et al . High voltage and safe electrolytes based on ionic liquid and sulfone for lithium-ion batteries[J]. J. Power Sources, 2013, 233: 115-120. |
68 | SUTTO T E , DUNCAN T T , WONG T C . X-ray diffraction studies of electrochemical graphite intercalation compounds of ionic liquids[J]. Electrochim. Acta., 2009, 54: 5648-5655. |
69 | MEISTER P , SIOZIOS V , REITER J , et al . Dual-ion cells based on the electrochemical intercalation of asymmetric fluorosulfonyl-(trifluoromethanesulfonyl) imide anions into graphite[J]. Electrochim. Acta., 2014, 130: 625-633. |
70 | MEISTER P , SCHMUELLING G , WINTER M , et al . New insights into the uptake/release of FTFSI-anions into graphite by means of in situ powder X-ray diffraction[J]. Electrochem. Commun., 2016, 71: 52-55. |
71 | BELTROP K , MEISTER P , KLEIN S , et al . Does Size really matter ? new insights into the intercalation behavior of anions into a graphite-based positive electrode for dual-ion batteries[J]. Electrochim. Acta., 2016, 209: 44-55. |
72 | YANG Q , ZHANG Z , SUN X G , et al . Ionic liquids and derived materials for lithium and sodium batteries[J]. Chem. Soc. Rev., 2018, 47: 2020-2064. |
73 | NOEL M , SANTHANAM R . Electrochemistry of graphite intercalation compounds[J]. J. Power Sources, 1998, 72: 53-65. |
74 | SCHMUELLING G , PLACKE T , KLOEPSCH R , et al . X-ray diffraction studies of the electrochemical intercalation of bis(trifluoromethanesulfonyl)imide anions into graphite for dual-ion cells[J]. J. Power Sources, 2013, 239: 563-571. |
75 | BALABAJEW M , REINHARDT H , BOCK N , et al . In-situ raman study of the intercalation of bis(trifluoromethylsulfonyl)imid ions into graphite inside a dual-ion cell[J]. Electrochim. Acta., 2016, 211: 679-688. |
76 | ISHIHARA T , YOKOYAMA Y , KOZONO F ,et al . Intercalation of PF6 - anion into graphitic carbon with nano pore for dual carbon cell with high capacity[J]. J. Power Sources, 2011, 196: 6956-6959. |
77 | ANGELL M , PAN C J , RONG Y , et al . High coulombic efficiency aluminum-ion battery using an AlCl3 - urea ionic liquid analog electrolyte[J]. Proc. Nat. Acad. Sci. USA, 2017, 114: 834-839. |
78 | PLACKE T , ROTHERMEL S , FROMM O , et al . Influence of graphite characteristics on the electrochemical intercalation of bis(trifluoromethanesulfonyl) imide anions into a graphite-based cathode[J]. J. Electrochem. Soc., 2013, 160: A1979-A1991. |
79 | GAO J C , TIAN S F , QI L , et al . Intercalation manners of perchlorate anion into graphite electrode from organic solutions[J]. Electrochim. Acta, 2015, 176: 22-27. |
80 | BELTROP K , QI X , HERING T , et al . Enabling bis(fluorosulfonyl)imide-based ionic liquid electrolytes for application in dual-ion batteries[J]. J. Power Sources, 2018, 373: 193-202. |
81 | CARLIN R T , DELONG H C , FULLER J , et al . Dual intercalating molten electrolyte batteries[J]. J. Electrochem. Soc., 1995, 393: L73-L76. |
82 | LI Z , LIU J , LI J , et al . Graphite cathode and anode becoming graphene structures after cycling based on graphite-based dual ion battery using PP14 NTF2[J]. Carbon, 2018, 138: 52-60. |
83 | READ J A . In-situ studies on the electrochemical intercalation of hexafluorophosphate anion in graphite with selective cointercalation of solvent[J]. J. Phys. Chem. C, 2015, 119: 8438-8446. |
84 | LI N , XIN Y , CHEN H , et al . Thickness evolution of graphite-based cathodes in the dual ion batteries via in operando optical observation[J]. J. Energy Chem., 2018, 29: 122-128. |
85 | WANG S , JIAO S , TIAN D , et al . A novel ultrafast rechargeable multi-ions battery[J]. Adv. Mater., 2017, 29:1606349. |
86 | TANG Y , ZHANG Y , LI W , et al . Rational material design for ultrafast rechargeable lithium-ion batteries[J]. Chem. Soc. Rev., 2015, 44: 5926-5940. |
87 | WU Y , GONG M , LIN M C , et al . 3D graphitic foams derived from chloroaluminate anion intercalation for ultrafast aluminum-ion battery[J]. Adv. Mater., 2016, 28: 9218-9222. |
88 | JUNG S C , KANG Y J , YOO D J, et al . Flexible few-layered graphene for the ultrafast rechargeable aluminum-ion battery[J]. J. Phys. Chem. C, 2016, 120: 13384-13389. |
89 | YU X , WANG B , GONG D , et al . Graphene nanoribbons on highly porous 3D graphene for high-capacity and ultrastable Al-ion batteries[J]. Adv. Mater., 2017, 29:1604118. |
90 | CHEN H , GUO F , LIU Y , et al . A defect-free principle for advanced graphene cathode of aluminum-ion battery[J]. Adv. Mater., 2017, 29: 1605958. |
91 | YANG Y , LIU X , ZHU Z , et al . The role of geometric sites in 2D materials for energy storage[J]. Joule, 2018, 2: 1075-1094. |
92 | CHEN S , WANG J , FAN L , et al . An ultrafast rechargeable hybrid sodium‐based dual‐ion capacitor based on hard carbon cathodes[J]. Adv. Energy Mater., 2018, 8:1800140. |
93 | RODRIGUEZ-PéREZ I A , JIAN Z , WALDENMAIER P K ,et al . A hydrocarbon cathode for dual-ion batteries[J]. ACS Energy Lett., 2016, 1: 719-723. |
94 | FAN L , LIU Q , XU Z , et al . An organic cathode for potassium dual-ion full battery[J]. ACS Energy Lett., 2017, 2: 1614-1620. |
95 | SCHON T B , MCALLISTER B T , LI P F , et al . The rise of organic electrode materials for energy storage[J]. Chem. Soc. Rev., 2016, 45: 6345-6404. |
96 | SONG Z , ZHOU H . Towards sustainable and versatile energy storage devices: an overview of organic electrode materials[J]. Enrgy Environ. Sci., 2013, 6: 2280-2301. |
97 | CAO X , TAN C , SINDORO M , et al . Hybrid micro-/nano-structures derived from metal-organic frameworks: Preparation and applications in energy storage and conversion[J]. Chem. Soc. Rev., 2017, 46: 2660-2677. |
98 | REYNIER Y , YAZAMI R , FULTZ B . The entropy and enthalpy of lithium intercalation into graphite[J]. J. Power Sources, 2003, 119-121: 850-855. |
99 | PANDE V , VISWANATHAN V . Thermodynamics of lithium intercalation into graphite studied using density functional theory calculations incorporating van der Waals correlation and uncertainty estimation[J]. arXiv. preprint. arXiv: 1607.05658, 2016. |
100 | DAHN J R . Phase diagram of Li x C6 [J]. Phys. Rev. B, 1991, 44: 9170-9177. |
101 | OHZUKU T , IWAKOSHI Y , SAWAI K . Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell[J]. J. Electrochem. Soc., 1993, 140: 2490-2498. |
102 | PALACIN M R . Recent advances in rechargeable battery materials: A chemist's perspective[J]. Chem. Soc. Rev., 2009, 38: 2565-2575. |
103 | ZHANG W J . Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries[J]. J. Power Sources, 2011, 196: 877-885. |
104 | MEISTER P , FROMM O , ROTHERMEL S , et al . Sodium-based vs. lithium-based dual-ion cells:Eelectrochemical study of anion intercalation/de-intercalation into/from graphite and metal plating/dissolution behavior[J]. Electrochim. Acta, 2017, 228: 18-27. |
105 | JIANG C , FANG Y , LANG J , et al . Integrated configuration design for ultrafast rechargeable dual-ion battery[J]. Adv. Energy Mater., 2017, 7: 1700913. |
106 | QIN P , WANG M , LI N , et al . Bubble‐sheet‐like interface design with an ultrastable solid electrolyte layer for high-performance dual-ion batteries[J]. Adv. Mater., 2017, 29: 1606805. |
107 | TONG X , ZHANG F , JI B , et al . Carbon-coated porous aluminum foil anode for high‐tate, long-term cycling stability, and high energy density dual‐ion batteries[J]. Adv. Mater., 2016, 28: 9979-9985. |
108 | LIU Y , HUDAK N S , HUBER D L , et al . In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation-delithiation cycles[J]. Nano Lett., 2011, 11: 4188-4194. |
109 | MCALISTER A . The Al-Li (aluminum-lithium) system[J]. Bull. Alloy Phase Diagr., 1982, 3: 177-183. |
110 | WEN C J , BOUKAMP B A , HUGGINS R A , et al . Thermodynamic and mass-transport properties of LiAl[J]. J. Electrochem. Soc., 1979, 126: 2258-2266. |
111 | HAMON Y , BROUSSE T , JOUSSE F , et al . Aluminum negative electrode in lithium ion batteries[J]. J. Power Sources, 2001, 97: 185-187. |
112 | KUKSENKO S P . Aluminum foil as anode material of lithium-ion batteries: Effect of electrolyte compositions on cycling parameters[J]. Russ. J. Electrochem., 2013, 49: 67-75. |
113 | POLLAK E , LUCAS I T , KOSTECKI R . A study of lithium transport in aluminum membranes[J]. Electrochem. Commun., 2010, 12: 198-201. |
114 | JOW T R, LIANG C C . Lithium-aluminum electrodes at ambient-temperatures[J]. J. Electrochem. Soc., 1982, 129: 1429-1434. |
115 | KUMAGAI N , KIKUCHI Y , TANNO K , et al . Electrochemical investigation of the diffusion of lithium in β-LiAl alloy at room temperature[J]. J. Appl. Electrochem., 1992, 22: 728-732. |
116 | HUME-ROTHERY W . CXXV—The system sodium-tin[J]. J. Chem. Soc., 1928: 947-963. |
117 | CROUCHBAKER S , DEUBLEIN G , TSAI H C , et al . Materials considerations related to sodium-based rechargeable cells for use above room-temperature[J]. Solid State Ionics, 1990, 42: 109-115. |
118 | CHEVRIER V L , CEDER G . Challenges for Na-ion negative electrodes[J]. J. Electrochem. Soc., 2011, 158. |
119 | ELLIS L D , HATCHARD T D , OBROVAC M N . Reversible insertion of sodium in tin[J]. J. Electrochem. Soc., 2012, 159: A1801-A1805. |
120 | KOMABA S , MATSUURA Y , ISHIKAWA T , et al . Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell[J]. Electrochem. Commun., 2012, 21: 65-68. |
121 | BAGGETTO L , GANESH P , MEISNER R P , et al . Characterization of sodium ion electrochemical reaction with tin anodes: Experiment and theory[J]. J. Power Sources, 2013, 234: 48-59. |
122 | SANGSTER J , BALE C W . The K-Sn (potassium-tin) system[J]. J. Phase Equilib., 1998, 19: 67-69. |
123 | SULTANA I , RAMIREDDY T , RAHMAN M M , et al . Tin-based composite anodes for potassium-ion batteries[J]. Chem. Commun., 2016, 52: 9279-9282. |
124 | RAMIREDDY T , KALI R , JANGID M K , et al . Insights into electrochemical behavior, phase evolution and stability of sn upon K-alloying/de-alloying via in situ studies[J]. J. Electrochem. Soc., 2017, 164: A2360-A2367. |
125 | ZHANG W , MAO J , LI S , et al . Phosphorus-based alloy materials for advanced potassium-ion battery anode[J]. J. Am. Chem. Soc., 2017, 139: 3316-3319. |
126 | OHNO M , KOZLOV A , ARROYAVE R , et al . Thermodynamic modeling of the Ca-Sn system based on finite temperature quantities from first-principles and experiment[J]. Acta Mater., 2006, 54: 4939-4951. |
127 | LIPSON A L , PAN B , LAPIDUS S H , et al . Rechargeable Ca-ion batteries: A new energy storage system[J]. Chem. Mater., 2015, 27: 8442-8447. |
128 | OBROVAC M N , CHEVRIER V L . Alloy negative electrodes for Li-ion batteries[J]. Chem. Rev., 2014, 114: 11444-11502. |
129 | VU A, QIAN Y , STEIN A . Porous electrode materials for lithium-ion batteries—how to prepare them and what makes them special[J]. Adv. Energy Mater., 2012, 2: 1056-1085. |
130 | ZHANG H , YU X , BRAUN P V . Three-dimensional bicontinuous ultrafast-charge and discharge bulk battery electrodes[J]. Nat. Nanotechnol., 2011, 6: 277-281. |
131 | ZHU H , ZHANG F , LI J , et al . Penne-like MoS2/carbon nanocomposite as anode for sodium-ion-based dual-ion battery[J]. Small, 2018, 14: 1703951. |
132 | CUI C , WEI Z , XU J , et al . Three-dimensional carbon frameworks enabling MoS2 as anode for dual ion batteries with superior sodium storage properties[J]. Energy Storage Mater., 2018, 15: 22-30. |
133 | LIU C , LI F , MA L P , et al . Advance materials for energy storage[J]. Adv. Mater., 2010, 22: E28-E62. |
134 | LI H , ZHOU H . Enhancing the performances of Li-ion batteries by carbon-coating: Present and future[J]. Chem. Commun., 2012, 48: 1201-1217. |
135 | MYUNG S T , AMINE K , SUN Y K . Surface modification of cathode materials from nano-to microscale for rechargeable lithium-ion batteries[J]. J. Mater. Chem., 2010, 20: 7074-7095. |
136 | HU X , ZHANG W , LIU X , et al . Nanostructured Mo-based electrode materials for electrochemical energy storage[J]. Chem. Soc. Rev., 2015, 44: 2376-2404. |
137 | TONG X , ZHANG F , CHEN G , et al . Core-shell aluminum@ carbon nanospheres for dual-ion batteries with excellent cycling performance under high rates[J]. Adv. Energy Mater., 2018, 8: 1701967. |
138 | ZHANG S , WANG M , ZHOU Z , et al . Multifunctional electrode design consisting of 3D porous separator modulated with patterned anode for high-performance dual-ion batteries[J]. Adv. Funct. Mater., 2017, 27: 1703035. |
139 | GUNAWARDHANA N , PARK G J , DIMOV N , et al . Constructing a novel and safer energy storing system using a graphite cathode and a MoO3 anode[J]. J. Power Sources, 2011, 196: 7886-7890. |
140 | PARK G , GUNAWARDHANA N , LEE C, et al . Development of a novel and safer energy storage system using a graphite cathode and Nb2O5 anode[J]. J. Power Sources, 2013, 236: 145-150. |
141 | THAPA A K , PARK G , NAKAMURA H , et al . Novel graphite/TiO2 electrochemical cells as a safe electric energy storage system[J]. Electrochim. Acta, 2010, 55: 7305-7309. |
142 | LI C , WANG X , LI J , et al . FePO4 as an anode material to obtain high-performance sodium-based dual-ion batteries[J]. Chem. Commun., 2018, 54: 4349-4352. |
143 | ZHAO M , HUANG Y , PENG Y , et al . Two-dimensional metal-organic framework nanosheets: Synthesis and applications[J]. Chem. Soc. Rev., 2018, 47: 6267-6295. |
144 | TAN C , LAI Z , ZHANG H . Ultrathin two-dimensional multinary layered metal chalcogenide nanomaterials[J]. Adv. Mater., 2017, 29: 1701392. |
145 | LIAN P C , DONG Y F , WU Z S , et al . Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries[J]. Nano Energy, 2017, 40: 1-8. |
146 | WANG X , QI L , WANG H . Commercial carbon molecular sieves as a Na+-storage anode material in dual-ion batteries[J]. J. Electrochem. Soc., 2017, 164: A3649-A3656. |
147 | DONG S , LI Z , RODRíGUEZ-PéREZ I A , et al . A novel coronene//Na2Ti3O7 dual-ion battery[J]. Nano Energy, 2017, 40: 233-239. |
148 | SEN U K, MITRA S . High-rate and high-energy-density lithium-ion battery anode containing 2D MoS2 nanowall and cellulose binder[J]. ACS Appl. Mater. Interfaces, 2013, 5: 1240-1247. |
149 | JIN R , YANG L , LI G , et al . Hierarchical worm-like CoS2 composed of ultrathin nanosheets as an anode material for lithium-ion batteries[J]. J. Mater. Chem. A, 2015, 3: 10677-10680. |
150 | LI C , HU X , TONG W , et al . Ultrathin manganese-based metal-organic framework nanosheets: Low-cost and energy-dense lithium storage anodes with the coexistence of metal and ligand redox activities[J]. ACS. Appl. Mater. Interfaces, 2017, 9: 29829-29838. |
151 | NING Y , LOU X , LI C , et al . Ultrathin cobalt‐based metal-organic framework nanosheets with both metal and ligand redox activities for superior lithium storage[J]. Chem. Eur. J., 2017, 23: 15984-15990. |
152 | MASHTALIR O , NAGUIB M , MOCHALIN V N , et al . Intercalation and delamination of layered carbides and carbonitrides[J]. Nat. Commun., 2013, 4: 1716. |
153 | ANASORI B , LUKATSKAYA M R , GOGOTSI Y . 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nat. Rev. Mater., 2017, 2: 16098. |
154 | LUO J , TAO X , ZHANG J , et al . Sn4+ ion decorated highly conductive Ti3C2 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance[J]. ACS Nano, 2016, 10: 2491-2499. |
155 | ER D, LI J , NAGUIB M , et al . Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries[J]. ACS Appl. Mater. Interfaces, 2014, 6: 11173-11179. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[3] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[4] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[5] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[6] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[7] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[8] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[9] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[10] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[11] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[12] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[13] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[14] | 沈秀, 曾月劲, 李睿洋, 李佳霖, 李伟, 张鹏, 赵金保. γ射线辐照交联原位固态化阻燃锂离子电池[J]. 储能科学与技术, 2022, 11(6): 1816-1821. |
[15] | 于春辉, 何姿颖, 张晨曦, 林贤清, 肖哲熙, 魏飞. 硅基负极与电解液化学反应的分析与抑制策略[J]. 储能科学与技术, 2022, 11(6): 1749-1759. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||