储能科学与技术 ›› 2020, Vol. 9 ›› Issue (2): 538-550.doi: 10.19799/j.cnki.2095-4239.2019.0287
收稿日期:
2019-12-26
修回日期:
2020-02-03
出版日期:
2020-03-05
发布日期:
2020-03-15
通讯作者:
陆盈盈
E-mail:shulanmao@zju.edu.cn;yingyinglu@zju.edu.cn
作者简介:
毛舒岚(1996—),女,博士研究生,主要研究方向为高电压锂离子电池,E-mail:
MAO Shulan(), WU Qian(
), WANG Zhuoya, LU Yingying(
)
Received:
2019-12-26
Revised:
2020-02-03
Online:
2020-03-05
Published:
2020-03-15
Contact:
Yingying LU
E-mail:shulanmao@zju.edu.cn;yingyinglu@zju.edu.cn
摘要:
层状三元材料LiNi x CoyMn1- x - y O2(以下简称NCM)具有较高的比容量和工作电压平台及良好的倍率性能,在电动汽车领域占据重要地位。为满足电动汽车续航里程的需求,提高工作电压被视为提升三元锂离子电池能量密度的一种有效手段。然而现存电解液电化学窗口窄,无法实现高电压下的稳定循环。本综述对高工作电压下的NCM电池电解质进行探讨,从电解液在高工作电压下分解相关的前线轨道理论及电极与电解液界面反应出发,指出了提高三元正极材料锂离子电池高压工作性能的关键,总结了近年来高工作电压下三元正极材料锂离子电池非水系电解质在溶剂、锂盐、添加剂等方面的设计进展以及固态电解质和离子液体在高工作电压下NCM电池中的应用。最后对电解液在高工作电压下的实际应用提出改进方案,对未来固态电解质的发展趋势提出展望。
中图分类号:
毛舒岚, 武倩, 王卓雅, 陆盈盈. 三元NCM锂离子电池高电压电解质的研究进展[J]. 储能科学与技术, 2020, 9(2): 538-550.
MAO Shulan, WU Qian, WANG Zhuoya, LU Yingying. Research progress on high-voltage electrolytes for ternary NCM lithium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 538-550.
1 | ARMAND M , TARASCON J M . Building better batteries[J]. Nature, 2008, 451(7): 652-657. |
2 | MALEKI KHEIMEH SARI H , Li X . Controllable cathode-electrolyte interface of Li[Ni0.8Co0.1Mn0.1]O2 for lithium ion batteries: A review[J]. Advanced Energy Materials, 2019, 9(39): 1901597. |
3 | YANG Z , ZHANG J , KINTNER-MEYER M C , et al . Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613. |
4 | S-TMYUNG, MAGLIA F , K-JPARK, et al . Nickel-rich layered cathode materials for automotive lithium-ion batteries: Achievements and perspectives[J]. ACS Energy Letters, 2016, 2(1): 196-223. |
5 | RADIN M D , HY S, SINA M , et al . Narrowing the gap between theoretical and practical capacities in Li-ion layered oxide cathode materials[J]. Advanced Energy Materials, 2017, 7(20): 1602888. |
6 | ZHANG S , MA J , HU Z , et al . Identifying and addressing critical challenges of high-voltage layered ternary oxide cathode materials[J]. Chemistry of Materials, 2019, 31(16): 6033-6065. |
7 | CHEN S , WEN K , FAN J , et al . Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes[J]. Journal of Materials Chemistry A, 2018, 6(25): 11631-11663. |
8 | TORNHEIM A , SHARIFI-ASL S , GARCIA J C , et al . Effect of electrolyte composition on rock salt surface degradation in NMC cathodes during high-voltage potentiostatic holds[J]. Nano Energy, 2019, 55: 216-225. |
9 | CHOI N S , CHEN Z , FREUNBERGER S A , et al . Challenges facing lithium batteries and electrical double-layer capacitors[J]. Angewandte Chemie International Edition, 2012, 51(40): 9994-10024. |
10 | GOODENOUGH J B , KIM Y . Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. |
11 | SHAO N , SUN X G , DAI S , et al . Electrochemical windows of sulfone-based electrolytes for high-voltage Li-ion batteries[J]. the Journal of Physical Chemistry B, 2011, 115(42): 12120-12125. |
12 | CHOI N S , HAN J G , HA S Y, et al . Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries[J]. RSC Advances, 2015, 5(4): 2732-2748. |
13 | YU F , YUAN Z , YANG T , et al . Contagious degradation of a chemically active surface on the cathodes of lithium-ion batteries[J]. Physical Chemistry Chemical Physics, 2018, 20(28): 19195-19207. |
14 | KIM U H , TMYUNG S , YOON C S , et al . Extending the battery life using an Al-doped Li[Ni0.76Co0.09Mn0.15]O2 cathode with concentration gradients for lithium ion batteries[J]. ACS Energy Letters, 2017, 2(8): 1848-1854. |
15 | B-JCHAE, YIM T . Sulfonate-immobilized artificial cathode electrolyte interphases layer on Ni-rich cathode[J]. Journal of Power Sources, 2017, 360: 480-487. |
16 | CHEN D , MAHMOUD M A , WANG J H , et al . Operando investigation into dynamic evolution of cathode-electrolyte interfaces in a Li-ion battery[J]. Nano Letters, 2019, 19(3): 2037-2043. |
17 | LIU S , WANG L , ZHANG C , et al . Dynamic evolution of cathode electrolyte interface of LiNi0.6Co0.2Mn0.2O2 during the initial charge-discharge process[J]. Journal of Power Sources, 2019, 438: 226979. |
18 | LI W , DOLOCAN A , OH P, et al . Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries[J]. Nature Communications, 2017, 8: 14589. |
19 | LEE Y M, NAM K M, HWANG E H , et al . Interfacial origin of performance improvement and fade for 4.6 V LiNi0.5Co0.2Mn0.3O2 battery cathodes[J]. the Journal of Physical Chemistry C, 2014, 118(20): 10631-10639. |
20 | LU D , XU G , HU Z , et al . Deciphering the interface of a high-voltage (5 V‐class) Li-ion battery containing additive-assisted sulfolane-based electrolyte[J]. Small Methods, 2019, 3(10): 1900546. |
21 | HILBIG P , IBING L , WAGNER R , et al . Ethyl methyl sulfone-based electrolytes for lithium ion battery applications[J]. Energies, 2017, 10(9): 1312. |
22 | WU F , ZHOU H , BAI Y , et al . Toward 5 V Li-ion batteries: Quantum chemical calculation and electrochemical characterization of sulfone-based high-voltage electrolytes[J]. ACS Applied Materials Interfaces, 2015, 7(27): 15098-15107. |
23 | POHL B , HILLER M M , SEIDEL S M , et al . Nitrile functionalized disiloxanes with dissolved LiTFSI as lithium ion electrolytes with high thermal and electrochemical stability[J]. Journal of Power Sources, 2015, 274: 629-635. |
24 | DUNCAN H , SALEM N , ABU-LEBDEH Y . Electrolyte formulations based on dinitrile solvents for high voltage Li-ion batteries[J]. Journal of The Electrochemical Society, 2013: A838-A848. |
25 | XIE B , MAI Y, WANG J , et al . Dinitrile compound containing ethylene oxide moiety with enhanced solubility of lithium salts as electrolyte solvent for high-voltage lithium-ion batteries[J]. Ionics, 2014, 21(4): 909-915. |
26 | ZHANG Q , LIU K , DING F , et al . Enhancing the high voltage interface compatibility of LiNi0.5Co0.2Mn0.3O2 in the succinonitrile-based electrolyte[J]. Electrochimica Acta, 2019, 298: 818-826. |
27 | LEE S H, HWANG J Y , PARK S J , et al . Adiponitrile (C6H8N2): A new bi-functional additive for high-performance Li-metal batteries[J]. Advanced Functional Materials, 2019, 29(30):1902496. |
28 | ZHANG Z , HU L , WU H , et al . Fluorinated electrolytes for 5 V lithium-ion battery chemistry[J]. Energy & Environmental Science, 2013, 6(6): 1806. |
29 | YAN G , LI X , WANG Z , et al . Fluorinated solvents for high-voltage electrolyte in lithium-ion battery[J]. Journal of Solid State Electrochemistry, 2017, 21(6): 1589-1597. |
30 | HE M , SU C C , FENG Z , et al . High voltage LiNi0.5Mn0.3Co0.2O2/graphite cell cycled at 4.6 V with a FEC/HFDEC-based electrolyte[J]. Advanced Energy Materials, 2017, 7(15): 1700109. |
31 | FAN X , JI X , CHEN L , et al . All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nature Energy, 2019, 4(10): 882-890. |
32 | XU K . Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618. |
33 | CEKIC-LASKOVIC I , NVON ASPERN , IMHOLT L , et al . Synergistic effect of blended components in nonaqueous electrolytes for lithium ion batteries[J]. Topics In Current Chemistry, 2017, 375(2): 37. |
34 | ZHANG S S . An unique lithium salt for the improved electrolyte of Li-ion battery[J]. Electrochemistry Communications, 2006, 8(9): 1423-1428. |
35 | XU K . Tailoring electrolyte composition for LiBOB[J]. Journal of the Electrochemical Society, 2008, 155(10): A733. |
36 | XU G J , SHANGGUAN X H , DONG S M , et al . Key scientific issues in formulating blended lithium salts electrolyte for lithium batteries[J]. Angewandte Chemie International Edition, 2019, 58: 2-18 |
37 | WEBER R , GENOVESE M , LOULI A J , et al . Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte[J]. Nature Energy, 2019, 4(8): 683-689. |
38 | XIA L , JIANG Y , PAN Y , et al . Lithium bis(fluorosulfony)imide-lithium hexafluorophosphate binary-salt electrolytes for lithium-ion batteries: Aluminum corrosion behaviors and electrochemical properties[J]. Chemistry Select, 2018, 3(7): 1954-1960. |
39 | ELLIS L D , HILL I G , GERING K L , et al . Synergistic effect of LiPF6 and LiBF4 as electrolyte salts in lithium-ion cells[J]. Journal of the Electrochemical Society, 2017, 164(12): A2426-A2433. |
40 | YAMADA Y , WANG J , KO S, et al . Advances and issues in developing salt-concentrated battery electrolytes[J]. Nature Energy, 2019, 4: 269-280. |
41 | YOSHIDA K , NAKAMURA M , KAZUE Y , et al . Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes[J]. Journal of the American Chemical Society, 2011, 133(33): 13121-13129. |
42 | WANG J , YAMADA Y , SODEYAMA K , et al . Superconcentrated electrolytes for a high-voltage lithium-ion battery[J]. Nature Communication, 2016, 7: 12032. |
43 | MATSUMOTO K , INOUE K , NAKAHARA K , et al . Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte[J]. Journal of Power Sources, 2013, 231: 234-238. |
44 | FAN X , CHEN L , JI X , et al . Highly fluorinated interphases enable high-voltage Li-metal batteries[J]. Chem., 2018, 4(1): 174-185. |
45 | REN X L , ZOU L , JIAO S , et al . High-concentration ether electrolytes for stable high-voltage lithium metal batteries[J]. ACS Energy Letters, 2019, 4(4): 896-902. |
46 | ALVARADO J , SCHROEDER M A , POLLARD T P , et al . Bisalt ether electrolytes: A pathway towards lithium metal batteries with Ni-rich cathodes[J]. Energy & Environmental Science, 2019, 12(2): 780-794. |
47 | YAMADA Y , YAMADA A . Review—superconcentrated electrolytes for lithium batteries[J]. Journal of the Electrochemical Society, 2015, 162(14): A2406-A2423. |
48 | REN X , ZOU L , CAO X , et al . Enabling high-voltage lithium-metal batteries under practical conditions[J]. Joule, 2019, 3(7): 1662-1676. |
49 | HAREGEWOIN A M , WOTANGO A S , HWANG B J . Electrolyte additives for lithium ion battery electrodes: Progress and perspectives[J]. Energy & Environmental Science, 2016, 9(6): 1955-1988. |
50 | LI J , LI W , YOU Y , et al . Extending the service life of high-Ni layered oxides by tuning the electrode-electrolyte interphase[J]. Advanced Energy Materials, 2018, 8(29): 1801957. |
51 | ZHANG L , MA Y , CHENG X , et al . Enhancement of high voltage cycling performance and thermal stability of LiNi1/3Co1/3Mn1/3O2 cathode by use of boron-based additives[J]. Solid State Ionics, 2014, 263: 146-151. |
52 | SHKROB I A , ZHU Y , MARIN T W , et al . Mechanistic insight into the protective action of bis(oxalato)borate and difluoro(oxalate)borate anions in Li-ion batteries[J]. the Journal of Physical Chemistry C, 2013, 117(45): 23750-23756. |
53 | MA X , YOUNG R S , ELLIS L D , et al . 1,2,6-Oxadithiane 2,2,6,6-tetraoxide as an advanced electrolyte additive for Li[Ni0.5Mn0.3Co0.2]O2/graphite pouch cells[J]. Journal of the Electrochemical Society, 2019, 166(12): A2665-A2672. |
54 | MA L , SELF J , NIE M , et al . A systematic study of some promising electrolyte additives in Li[Ni1/3Mn1/3Co1/3]O2/graphite, Li[Ni0.5Mn0.3Co0.2]/graphite and Li[Ni0.6Mn0.2Co0.2]/graphite pouch cells[J]. Journal of Power Sources, 2015, 299: 130-138. |
55 | MA L , XIA J , DAHN J R . Improving the high voltage cycling of Li[Ni0.42Mn0.42Co0.16]O2(NMC442)/Graphite pouch cells using electrolyte additives[J]. Journal of the Electrochemical Society, 2014, 161(14): A2250-A2254. |
56 | WANG D Y , XIA J , MA L , et al . A systematic study of electrolyte additives in Li[Ni1/3Mn1/3Co1/3]O2(NMC)/graphite pouch cells[J]. Journal of the Electrochemical Society, 2014, 161(12): A1818--A1827. |
57 | XIA J , GLAZIER S L , PETIBON R , et al . Improving linear alkyl carbonate electrolytes with electrolyte additives[J]. Journal of the Electrochemical Society, 2017, 164(6): A1239-A1250. |
58 | QIAN Y , HU S , ZOU X , et al . How electrolyte additives work in Li-ion batteries[J]. Energy Storage Materials, 2019, 20: 208-215. |
59 | MING J , CAO Z , WU Y , et al . New insight on the role of electrolyte additives in rechargeable lithium ion batteries[J]. ACS Energy Letters, 2019, 4: 2613-2622. |
60 | LIAO B , LI H , XU M , et al . Designing low impedance interface films simultaneously on anode and cathode for high energy batteries[J]. Advanced Energy Materials, 2018, 8(22): 1800802. |
61 | ZUO X , FAN C , LIU J , et al . Lithium tetrafluoroborate as an electrolyte additive to improve the high voltage performance of lithium-ion battery[J]. Journal of the Electrochemical Society, 2013, 160(8): A1199-A1204. |
62 | ZUO X , FAN C , LIU J , et al . Effect of tris(trimethylsilyl)borate on the high voltage capacity retention of LiNi0.5Co0.2Mn0.3O2/graphite cells[J]. Journal of Power Sources, 2013, 229: 308-312. |
63 | BELTROP K , KLEIN S , NÖLLE R , et al . Triphenylphosphine oxide as highly effective electrolyte additive for graphite/NMC811 lithium ion cells[J]. Chemistry of Materials, 2018, 30(8): 2726-2741. |
64 | SU C C , HE M , PEEBLES C , et al . Functionality selection principle for high voltage lithium-ion battery electrolyte additives[J]. ACS Appl. Mater. Interfaces, 2017, 9(36): 30686-30695. |
65 | HE M , SU C C , PEEBLES C , et al . Mechanistic insight in the function of phosphite additives for protection of LiNi0.5Co0.2Mn0.3O2 cathode in high voltage Li-ion cells[J]. ACS Appl. Mater. Interfaces, 2016, 8(18): 11450-11457. |
66 | CAI H , JING H , ZHANG X , et al . Improving High-voltage performance of lithium-ion batteries with sulfolane as an electrolyte additive[J]. Journal of the Electrochemical Society, 2017, 164(4): A714-A720. |
67 | YIM T, KANG K S , MUN J, et al . Understanding the effects of a multi-functionalized additive on the cathode electrolyte interfacial stability of Ni-rich materials[J]. Journal of Power Sources, 2016, 302: 431-438. |
68 | QIU W , XIA J , CHEN L , et al . A study of methyl phenyl carbonate and diphenyl carbonate as electrolyte additives for high voltage LiNi0.8Mn0.1Co0.1O2 /graphite pouch cells[J]. Journal of Power Sources, 2016, 318: 228-234. |
69 | WANG S , CHEN S , GAO W , et al . A new additive 3-isocyanatopropyltriethoxysilane to improve electrochemical performance of Li/NCM622 half-cell at high voltage[J]. Journal of Power Sources, 2019, 423: 90-97. |
70 | LIU X , LI X , LI H , et al . Recent progress of hybrid solid-state electrolytes for lithium batteries[J]. Chemistry-A European Journal, 2018, 24(69): 18293-18306. |
71 | FERGUS J W . Ceramic and polymeric solid electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 2010, 195(15): 4554-4569. |
72 | SHIN W K , CHO J, KANNAN A G , et al . Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO2 nanoparticles for lithium-ion polymer batteries[J]. Scientific Reports, 2016, 6: 26332. |
73 | HU P , ZHAO J , WANG T , et al . A composite gel polymer electrolyte with high voltage cyclability for Ni-rich cathode of lithium-ion battery[J]. Electrochemistry Communications, 2015, 61: 32-35. |
74 | FAN L , WEI S , LI S , et al . Recent progress of the solid-state electrolytes for high-energy metal-based batteries[J]. Advanced Energy Materials, 2018, 8(11):1702657. |
75 | TAN S J , ZENG X X , MA Q , et al . Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries[J]. Electrochemical Energy Reviews, 2018, 1(2): 113-138. |
76 | LE H T , NGO D T, KALUBARME R S , et al . Composite gel polymer electrolyte based on poly (vinylidene fluoride-hexafluoropropylene)(PVDF-HFP) with modified aluminum-doped lithium lanthanum titanate (A-LLTO) for high-performance lithium rechargeable batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(32): 20710-20719. |
77 | ZHANG Y , CHEN F , YANG D , et al . High capacity all-solid-state lithium battery using cathodes with three-dimensional Li+ conductive network[J]. Journal of the Electrochemical Society, 2017, 164(7): A1695-A1702. |
78 | ZHOU Y , LI Z , LU Y C . A stable lithium-selenium interface via solid/liquid hybrid electrolytes: Blocking polyselenides and suppressing lithium dendrite[J]. Nano Energy, 2017, 39: 554-561. |
79 | WANG C , SUN Q , LIU Y , et al . Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: Interfacial properties and effects of liquid electrolytes[J]. Nano Energy, 2018, 48: 35-43. |
80 | XU K . Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4417. |
81 | FEUILLADE G , PERCHE P . Ion-conductive macromolecular gels and membranes for solid lithium cells[J]. Journal of Applied Electrochemistry, 1975, 5(1): 63-69. |
82 | MATSUMOTO M , UNO T, KUBO M , et al . Polymer electrolytes based on polycarbonates and their electrochemical and thermal properties[J]. Ionics, 2013, 19(4): 615-622. |
83 | TSUZUKI S , MANDAI T , SUZUKI S , et al . Effect of the cation on the stability of cation-glyme complexes and their interactions with the [TFSA]-anion[J]. Physical Chemistry Chemical Physics, 2017, 19(28): 18262-18272. |
84 | CHENG S H-S , HE K-Q , LIU Y , et al . Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte[J]. Electrochimica Acta, 2017, 253: 430-438. |
85 | FENTON D E , PARKER J M , WRIGHT P V . Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14(11): 589. |
86 | TOMINAGA Y , SHIMOMURA T , NAKAMURA M . Alternating copolymers of carbon dioxide with glycidyl ethers for novel ion-conductive polymer electrolytes[J]. Polymer, 2010, 51(19): 4295-4298. |
87 | NAKAMURA M , TOMINAGA Y . Utilization of carbon dioxide for polymer electrolytes [II]: Synthesis of alternating copolymers with glycidyl ethers as novel ion-conductive polymers[J]. Electrochimica Acta, 2011, 57: 36-39. |
88 | TOMINAGA Y , NANTHANA V , TOHYAMA D . Ionic conduction in poly (ethylene carbonate)-based rubbery electrolytes including lithium salts[J]. Polymer Journal, 2012, 44(12): 1155. |
89 | TOMINAGA Y , YAMAZAKI K . Fast Li-ion conduction in poly (ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles[J]. Chemical Communications, 2014, 50(34): 4448-4450. |
90 | ZHAO Q , LIU X , STALIN S , et al . Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries[J]. Nature Energy, 2019, 4(5): 365. |
91 | FERGUS J W . Ceramic and polymeric solid electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 2010, 195(15): 4554-4569. |
92 | KNAUTH P . Inorganic solid Li ion conductors: An overview[J]. Solid State Ionics, 2009, 180(14/15/16): 911-916. |
93 | THANGADURAI V , NARAYANAN S , PINZARU D . Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review[J]. Chemical Society Reviews, 2014, 43(13): 4714-4727. |
94 | KAMAYA N , HOMMA K , YAMAKAEA Y , et al . A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686. |
95 | KATO Y , HORI S , SAITO T , et al . High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1(4): 16030. |
96 | KITAURAL H , HAYASHI A , TADANAGA K , et al . Electrochemical performance of all-solid-state lithium secondary batteries with Li-Ni-Co-Mn oxide positive electrodes[J]. Electrochimica Acta, 2010, 55(28): 8821-8828. |
97 | JANEK J , ZEIER W G . A solid future for battery development[J]. Energy, 2016, 500(400): 300. |
98 | STEPHAN A M , NAHM K . Review on composite polymer electrolytes for lithium batteries[J]. Polymer, 2006, 47(16): 5952-5964. |
99 | HU P , DUAN Y , HU D , et al . Rigid-flexible coupling high ionic conductivity polymer electrolyte for an enhanced performance of LiMn2O4/graphite battery at elevated temperature[J]. ACS Applied Materials & Interfaces, 2015, 7(8): 4720-4727. |
100 | ZHANG J , ZHAO J , YUE L , et al . Safety‐reinforced poly (propylene carbonate)‐based all-solid‐state polymer electrolyte for ambient‐temperature solid polymer lithium batteries[J]. Advanced Energy Materials, 2015, 5(24):1501082. |
101 | CHAI J , ZHANG J , HU P , et al . A high-voltage poly (methylethyl α-cyanoacrylate) composite polymer electrolyte for 5 V lithium batteries[J]. Journal of Materials Chemistry A, 2016, 4(14): 5191-5197. |
102 | ZHANG J , ZANG X , WEN H , et al . High-voltage and free-standing poly (propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery[J]. Journal of Materials Chemistry A, 2017, 5(10): 4940-4948. |
103 | CHAI J , LIU Z , MA J , et al . In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries[J]. Advanced Science, 2017, 4(2): 1600377. |
104 | CHAI J , LIU Z , ZHANG J , et al . A superior polymer electrolyte with rigid cyclic carbonate backbone for rechargeable lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(21): 17897-17905. |
105 | CUI Y , CHAI J , DU H , et al . Facile and reliable in situ polymerization of poly (ethyl cyanoacrylate)-based polymer electrolytes toward flexible lithium batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(10): 8737-8741. |
106 | LIU X , DING G , ZHOU X , et al . An interpenetrating network poly (diethylene glycol carbonate)-based polymer electrolyte for solid state lithium batteries[J]. Journal of Materials Chemistry A, 2017, 5(22): 11124-11130. |
107 | DONG T , ZHANG J , XU G , et al . A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery[J]. Energy & Environmental Science, 2018, 11(5): 1197-1203. |
108 | ELIA G A , ULISSI U , JEONG S , et al . Exceptional long-life performance of lithium-ion batteries using ionic liquid-based electrolytes[J]. Energy & Environmental Science, 2016, 9(10): 3210-3220. |
109 | YANG Q , ZHANG Z , SUN X G , et al . Ionic liquids and derived materials for lithium and sodium batteries[J]. Chemical Society Reviews, 2018, 47(6): 2020-2064. |
110 | NVON ASPERN , DIDDENS D , KOBAYASHI T , et al . Fluorinated cyclic phosphorus (III)-based electrolyte additives for high voltage application in lithium-ion batteries: Impact of structure-reactivity relationships on CEI formation and cell performance[J]. ACS Applied Materials & Interfaces, 2019, 11(18): 16605-16618. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[9] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[10] | 丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
[11] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[12] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[13] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[14] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[15] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||