储能科学与技术 ›› 2024, Vol. 13 ›› Issue (7): 2259-2269.doi: 10.19799/j.cnki.2095-4239.2024.0360

• 低温电池专刊 • 上一篇    下一篇

基于有机电极材料的低温电池研究进展

王浩天(), 王永刚, 董晓丽()   

  1. 复旦大学,上海 200433
  • 收稿日期:2024-04-24 修回日期:2024-05-08 出版日期:2024-07-28 发布日期:2024-07-23
  • 通讯作者: 董晓丽 E-mail:23210220038@m.fudan.edu.cn;xldong@fudan.edu.cn
  • 作者简介:王浩天(2001—),男,硕士研究生,研究方向为低温电解液,E-mail:23210220038@m.fudan.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFB2402200)

Advances in low-temperature organic batteries

Haotian WANG(), Yonggang WANG, Xiaoli DONG()   

  1. Fudan University, Shanghai 200433, China
  • Received:2024-04-24 Revised:2024-05-08 Online:2024-07-28 Published:2024-07-23
  • Contact: Xiaoli DONG E-mail:23210220038@m.fudan.edu.cn;xldong@fudan.edu.cn

摘要:

基于无机嵌入化合物电极材料的锂离子电池在低温(< -20 ℃)下会失去大部分容量,限制了其在电动汽车、航空航天和国防等关键领域的应用。与传统的无机嵌入化合物电极材料相比,具有氧化还原活性基团的有机电极材料通常表现出较快的电极反应动力学、较强的载流子适应性和优异的低温性能。同时,有机电极材料具有结构可设计性强、资源丰富、环境友好等优点,近年来在二次电池研究领域中受到了广泛关注。本文主要介绍了基于有机电极材料的低温电池体系的研究进展,根据不同氧化还原反应机理对有机电极材料进行了分类,阐述了有机电极材料的储能机制及其特点,结合近几年国内外研究介绍了有机物金属(离子)、非金属离子电池,有机物双离子电池等几类典型的低温有机物电池体系,分析了不同工作机理的有机电极材料在低温下的电化学行为,最后总结了有机电极材料在低温电池中的应用前景和挑战,旨在为未来低温有机物电池中有机电极材料的设计及其与电解液的适配性提供指导。

关键词: 有机电极材料, 储能机制, 低温电池, 双离子电池

Abstract:

Commercial lithium-ion batteries predominantly utilize inorganic intercalation compounds as electrodes. However, these materials experience notable capacity degradation at <-20℃, thereby restricting their broader application in sectors such as electric vehicles, aerospace exploration, and military defense. Organic electrodes, characterized by their redox-active groups, demonstrate rapid reaction kinetics, adaptability to various ions, and robust low-temperature electrochemical performance. Moreover, the flexibility in structural design, abundance of elemental resources, and environmental sustainability of organic materials have garnered increasing interest in the domain of rechargeable batteries. This review highlights recent advancements in low-temperature organic batteries by categorizing organic electrode materials based on their distinct energy storage mechanisms and discussing the attributes that facilitate their rapid kinetics and effective performance in cold environments. The discussion extends to several notable low-temperature organic battery types, including organic metal (ion), nonmetal-ion, and dual-ion batteries, elaborating on their unique electrochemical behaviors. The review concludes by outlining the potential applications and challenges of employing organic electrodes in low-temperature rechargeable batteries, ultimately aiming to guide the development of future organic electrode materials and their integration with compatible electrolytes.

Key words: organic electrodes, energy storage mechanism, low-temperature battery, dual-ion battery

中图分类号: