储能科学与技术 ›› 2024, Vol. 13 ›› Issue (7): 2470-2482.doi: 10.19799/j.cnki.2095-4239.2024.0091

• 储能测试与评价 • 上一篇    下一篇

锂离子电池热失控传播特性及其抑制策略研究进展

陈国贺1,2(), 吕培召1,2, 李孟涵1,2, 饶中浩1,2()   

  1. 1.河北工业大学能源与环境工程学院,先进储能技术与装备河北省工程研究中心
    2.河北工业大学能源与环境工程学院,河北省热科学与能源清洁利用技术重点实验室,天津 300401
  • 收稿日期:2024-01-28 修回日期:2024-02-08 出版日期:2024-07-28 发布日期:2024-07-23
  • 通讯作者: 饶中浩 E-mail:202121301006@stu.hebut.edu.cn;raozhonghao@hebut.edu.cn
  • 作者简介:陈国贺(1998—),男,硕士研究生,研究方向为锂离子电池热失控传播及其抑制研究,E-mail:202121301006@stu.hebut.edu.cn
  • 基金资助:
    国家自然科学基金项目(52176092);河北省教育厅科学研究项目(JZX2024003)

Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies

Guohe CHEN1,2(), Peizhao LYU1,2, Menghan LI1,2, Zhonghao RAO1,2()   

  1. 1.Hebei Engineering Research Center of Advanced Energy Storage Technology and Equipment, School of Energy and Environmental Engineering, Hebei University of Technology
    2.Hebei Key Laboratory of Thermal Science and Energy Clean Utilization, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
  • Received:2024-01-28 Revised:2024-02-08 Online:2024-07-28 Published:2024-07-23
  • Contact: Zhonghao RAO E-mail:202121301006@stu.hebut.edu.cn;raozhonghao@hebut.edu.cn

摘要:

锂离子电池以其能量密度高、生命周期长和自放电率低等优点,被广泛应用于电动汽车、储能电站等诸多领域。近年来,锂离子电池安全事故频发,尤其是高比能锂离子电池的安全性,是制约其发展的瓶颈问题。锂离子电池热失控机理、热失控传播特性、抑制热失控传播策略等是提高电池安全性的重要研究领域。因此,本文介绍了锂离子电池热失控的链式放热副反应导致电池内部产热、升温、产气及排气过程,分析了锂离子电池热失控过程热量在电池模组中的传播路径,总结了热失控触发方式、电池连接方式、电池排列方式、环境条件、电池正极材料、电池充电倍率、电池间距和电池荷电状态等因素对电池热失控传播特性的影响,重点分析了空气冷却、液冷板冷却、浸没式冷却、相变材料、高导热材料、隔热材料和多种热管理技术组合等策略抑制锂离子电池的热失控传播的效果。在此基础上,本文对锂离子电池热失控传播机理、仿真和抑制策略提供了方向和思路,对提升锂离子电池的安全性,促进电化学储能技术的发展与应用具有重要意义。

关键词: 热失控, 热失控传播, 电池热管理, 锂离子电池

Abstract:

Lithium-ion batteries are extensively employed in electric vehicles, energy storage power stations, and various other fields, attributed to their high energy density, prolonged life cycle, and low self-discharge rate. In recent years, safety incidents involving lithium-ion batteries have become frequent, particularly concerning the safety of batteries with high specific energy, which poses a critical bottleneck in their advancement. Key research areas—such as the thermal runaway mechanism, thermal runaway propagation characteristics, and strategies to inhibit thermal runaway propagation—are essential for enhancing battery safety. This paper discusses the chain of exothermic side reactions that lead to thermal runaway in lithium-ion batteries, resulting in heat generation, warming, gassing, and exhausting processes within the battery. It analyzes the heat propagation pathways in battery modules during thermal runaway, examines the impact of various factors—such as the mode of thermal runaway initiation, battery connection mode, battery arrangement, environmental conditions, cathode material, charge rate, battery spacing, and stage of charge—on the characteristics of thermal runaway propagation, and delves into strategies for inhibiting thermal runaway propagation—including air cooling, liquid cooling, plate cooling, submerged cooling, phase change materials, high thermal conductivity materials, thermal insulation materials, and combinations of multiple thermal management technologies. Furthermore, the paper provides insights and perspectives on the mechanisms, simulations, and inhibition strategies related to thermal runaway propagation in lithium-ion, which holds remarkable implications for advancing the safety of these batteries and promoting the development and application of electrochemical energy storage technology.

Key words: thermal runaway, thermal runaway propagation, battery thermal management, lithium-ion battery

中图分类号: