储能科学与技术 ›› 2024, Vol. 13 ›› Issue (7): 2192-2205.doi: 10.19799/j.cnki.2095-4239.2024.0559

• 低温电池专刊 • 上一篇    下一篇

电解液改善锂离子电池低温析锂研究进展

李泽珩1,2(), 徐磊3, 姚雨星1, 闫崇3, 翟喜民4, 郝雪纯4, 陈爱兵5, 黄佳琦3, 别晓非4, 孙焕丽4, 范丽珍6, 张强1,7,8()   

  1. 1.清华大学化学工程系,绿电化工研究中心,绿色反应工程与工艺北京市重点实验室,北京 100084
    2.浙江大学化学工程与生物工程学院,浙江 杭州 310058
    3.北京理工大学前沿交叉科学研究院,北京 100081
    4.中国第一汽车股份有限公司,吉林 长春 130013
    5.河北科技大学化学与制药工程学院,河北 石家庄 050018
    6.北京科技大学新材料技术研究院,北京 100083
    7.清华大学碳中和研究院,北京 100084
    8.清华大学山西清洁能源研究院,山西 太原 030032
  • 收稿日期:2024-06-21 修回日期:2024-07-01 出版日期:2024-07-28 发布日期:2024-07-23
  • 通讯作者: 张强 E-mail:zehengli@zju.edu.cn;zhang-qiang@mails.tsinghua.edu.cn
  • 作者简介:李泽珩(1992—),男,博士,研究员,研究方向为锂电池,E-mail:zehengli@zju.edu.cn
  • 基金资助:
    京津冀协同创新共同体建设专项(22344402D);北京市自然科学基金重点项目(Z200011);国家自然科学基金项目(22379014);吉林省重大专项(20210301021GX);山西省重点研发计划(202102060301011);鄂尔多斯-清华碳中和协同创新专项,清华大学自主科研

A review of electrolyte reducing lithium plating in low-temperature lithium-ion batteries

Zeheng LI1,2(), Lei XU3, Yuxing YAO1, Chong YAN3, Ximin ZHAI4, Xuechun HAO4, Aibing CHEN5, Jiaqi HUANG3, Xiaofei BIE4, Huanli SUN4, Lizhen FAN6, Qiang ZHANG1,7,8()   

  1. 1.Tsinghua Center for Green Chemical Engineering Electrification, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
    2.College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
    3.Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
    4.China FAW Group Co. , Ltd. , Changchun 130013, Jilin, China
    5.College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China
    6.Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
    7.Institute for Carbon Neutrality, Tsinghua University, Beijing 100084, China
    8.Shanxi Research Institute for Clean Energy, Tsinghua University, Taiyuan 030032, Shanxi, China
  • Received:2024-06-21 Revised:2024-07-01 Online:2024-07-28 Published:2024-07-23
  • Contact: Qiang ZHANG E-mail:zehengli@zju.edu.cn;zhang-qiang@mails.tsinghua.edu.cn

摘要:

锂离子电池作为便携式电子产品和电动汽车的“心脏”,在推动人类社会的无化石燃料化中发挥着至关重要的作用。然而,在低温条件下(0 ℃及以下)充电时,锂离子电池电极极化急剧增大,导致了严重的析锂问题。通过合理设计低温电解液,降低低温充电时电极极化,并构建稳定的电解液-电极界面,可以有效遏制析锂及其对锂离子电池带来的不利影响。本文首先阐释了低温下锂离子电池析锂的形成机制,并指出低温电解液的设计是改善锂离子电池低温析锂行为的有效途径。接着,本文进一步介绍了缓解低温析锂问题的几种电解液设计策略,包括降低去溶剂化能垒的弱溶剂化电解液和共嵌入电解液、衍生低阻抗固态电解质界面膜(SEI)的局部高盐电解液以及钝化析锂的羧酸酯基高盐电解液,同时比较了这些策略的优劣势。最后,结合现有研究成果,展望了电解液调控低温析锂行为的未来研究方向,提出了发展实时析锂预警方法、采用实用化条件评估电解液抑制低温析锂能力以及设计兼顾电化学动力学和界面稳定性的高比能硅碳负极用低温电解液,以望实现低温锂离子电池的高容量发挥和长循环寿命。

关键词: 析锂, 低温, 电解液, 锂离子电池, 电极极化

Abstract:

Lithium-ion batteries (LIBs) are strongly considered the "heart" of portable electronic devices and electric vehicles, playing a vital role in advancing the de-fossil fuels for our sustainable world. However, during charging in low-temperature conditions (0℃ and below), the electrode polarization of LIBs increases, leading to significant Li plating. To address this issue, it is imperative to strategically design low-temperature electrolytes, that can reduce electrode polarization during low-temperature charging and establish a stable electrolyte-electrode interface. By doing so, it becomes feasible to effectively mitigate Li plating and its detrimental impacts on LIBs. In this review, we firstly introduce the formation mechanism of low-temperature lithium plating and emphasize that the implementation of low-temperature electrolyte to mitigating the low-temperature Li plating in working LIBs. Subsequently, we summarize various electrolyte design strategies aimed at mitigating the challenges posed by low-temperature Li plating. The strategies include weakly solvating electrolytes and solvent co-intercalation electrolytes to lower the desolvation energy barrier, localized high-concentration electrolytes for low-impedance SEI formation, and ester-based high-concentration electrolytes for passivating plated Li. Furthermore, we analyzed the strengths and weaknesses of these strategies. Lastly, drawing on existing research findings, we outline the future directions concerning the regulation of low-temperature Li plating behavior through electrolyte solutions. Emphasis is placed on the necessity of developing real-time early-warning methods for Li plating, evaluating the effectiveness of electrolytes in inhibiting low-temperature Li plating under practical conditions, and designing of low-temperature electrolytes tailored for silicon-carbon composite anodes that consider both electrochemical kinetics and interfacial stability. These approaches aim to simultaneously achieve high capacity and long lifespan of low-temperature LIBs.

Key words: Li plating, low temperature, electrolyte, lithium-ion batteries, electrode polarization

中图分类号: