1 |
YUAN L X, WANG Z H, ZHANG W X, et al. Development and challenges of LiFePO4 cathode material for lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4(2): 269-284.
|
2 |
YANG L, DENG W T, XU W, et al. Olivine LiMnxFe1- xPO4 cathode materials for lithium ion batteries: Restricted factors of rate performances[J]. Journal of Materials Chemistry A, 2021, 9(25): 14214-14232.
|
3 |
SAIFULLAH M, MOSTAFIZUR R, MD K, et al. Recent advances in lithium-ion battery materials for improved electrochemical performance: A review[J]. Results in Engineering, 2022, 15: 100472.
|
4 |
CHEN X L, GONG Y D, LI X, et al. Perspective on low-temperature electrolytes for LiFePO4-based lithium-ion batteries[J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(1): 1-13.
|
5 |
李淼, 于永利, 吴剑扬, 等. 高能量密度磷酸铁锂正极设计[J]. 储能科学与技术, 2023, 12(7): 2045-2058.
|
|
LI M, YU Y L, WU J Y, et al. Design of high-energy-density LiFePO4 cathode materials[J]. Energy Storage Science and Technology, 2023, 12(7): 2045-2058.
|
6 |
KE X, XIAO R, LIAO X F, et al. LiFePO4/C cathode material prepared with sphere mesoporous-FePO4 as precursors for lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2018, 820: 18-23.
|
7 |
LI B K, XIAO J Q, ZHU X Y, et al. Enabling high-performance lithium iron phosphate cathodes through an interconnected carbon network for practical and high-energy lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2024, 653: 942-948.
|
8 |
HSIEH C T, CHEN I L, CHEN W Y, et al. Synthesis of iron phosphate powders by chemical precipitation route for high-power lithium iron phosphate cathodes[J]. Electrochimica Acta, 2012, 83: 202-208.
|
9 |
SCANLAN K, MANTHIRAM A. Revealing the electrochemical kinetics of electrolytes in nanosized LiFePO4 electrodes[J]. Journal of the Electrochemical Society, 2023, 170(10): 100515.
|
10 |
APACHITEI G, HEYMER R, LAIN M, et al. Scale-up of lithium iron phosphate cathodes with high active materials contents for lithium ion cells[J]. Batteries, 2023, 9(10): 518-.
|
11 |
GAO X S, ZHENG C Y, SHAO Y Q, et al. Lithium iron phosphate enhances the performance of high-areal-capacity sulfur composite cathodes[J]. ACS Applied Materials & Interfaces, 2023, 15(15): 19011-19020.
|
12 |
HU Q, HE Y F, REN D S, et al. Targeted masking enables stable cycling of LiNi0.6Co0.2Mn0.2O2 at 4.6V[J]. Nano Energy, 2022, 96: 107123.
|
13 |
RUI X, JIN Y J, FENG X Y, et al. A comparative study on the low-temperature performance of LiFePO4/C and Li3V2(PO4)3/C cathodes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(4): 2109-2114.
|
14 |
YANG S C, HE R, ZHANG Z J, et al. CHAIN: Cyber hierarchy and interactional network enabling digital solution for battery full-lifespan management[J]. Matter, 2020, 3(1): 27-41.
|
15 |
SONG Y N, ZAVALIJ P Y, CHERNOVA N A, et al. Synthesis, crystal structure, and electrochemical and magnetic study of new iron (III) hydroxyl-phosphates, isostructural with lipscombite[J]. Chemistry of Materials, 2005, 17(5): 1139-1147.
|
16 |
HUBBLE D, BROWN D E, ZHAO Y Z, et al. Liquid electrolyte development for low-temperature lithium-ion batteries[J]. Energy & Environmental Science, 2022, 15(2): 550-578.
|
17 |
THENUWARA A C, SHETTY P P, KONDEKAR N, et al. Efficient low-temperature cycling of lithium metal anodes by tailoring the solid electrolyte interphase[J]. ACS Energy Letters, 2020, 5(7): 2411-2420.
|
18 |
WANG Z C, HAN R, HUANG D, et al. Co-intercalation-free ether-based weakly solvating electrolytes enable fast-charging and wide-temperature lithium-ion batteries[J]. ACS Nano, 2023, 17(18): 18103-18113.
|
19 |
LIU J X, NGUYEN D, WANG J Q, et al. Reevaluate low-concentration ether-based electrolytes for lithium metal batteries[J]. Nano Energy, 2024, 124: 109492.
|
20 |
LIU J, IHUAENYI S, KUPHAL R, et al. A Comparison of carbonate-based and ether-based electrolyte systems for lithium metal batteries[J]. Journal of The Electrochemical Society, 2023, 170(1): 010535.
|
21 |
JIANG Z, YANG T, LI C, et al. Synergistic additives enabling stable cycling of ether electrolyte in 4.4 V Ni-rich/Li metal batteries[J]. Advanced Functional Materials, 2023, 33(51): 2306868.
|
22 |
YIN L M, WANG M L, XIE C, et al. High-voltage cyclic ether-based electrolytes for low-temperature sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2023: 15(7): 9517-9523.
|
23 |
LI A M, BORODIN O, POLLARD T P, et al. Methylation enables the use of fluorine-free ether electrolytes in high-voltage lithium metal batteries[J]. Nature Chemistry, 2024.
|
24 |
ZHANG G Z, CHANG J, WANG L G, et al. A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries[J]. Nature Communications, 2023, 14: 1081.
|
25 |
FAN X L, CHEN L, JI X, et al. Highly fluorinated interphases enable high-voltage Li-metal batteries[J]. Chem, 2018, 4(1): 174-185.
|
26 |
PAL U, RAKOV D, LU B Y, et al. Interphase control for high performance lithium metal batteries using ether aided ionic liquid electrolyte[J]. Energy & Environmental Science, 2022, 15(5): 1907-1919.
|
27 |
李萌, 邱景义, 张松通, 等. 新型锂盐氟代磺酰亚胺锂电解液对锂离子电池性能的影响[J]. 储能科学与技术, 2017, 6(1): 101-107.
|
|
LI M, QIU J Y, ZHANG S T, et al. The effect of lithium bis(fluorosulfonyl)imide salt on the performance of Li-ion battery[J]. Energy Storage Science and Technology, 2017, 6(1): 101-107.
|
28 |
HEHRE W J, DITCHFIELD R, POPLE J A. Self—Consistent molecular orbital methods. XII. further extensions of Gaussian—Type basis sets for use in molecular orbital studies of organic molecules[J]. Journal of Chemical Physics, 1972, 56(5): 2257-2261.
|
29 |
DITCHFIELD R, HEHRE W J, POPLE J A. Self-consistent molecular-orbital methods. IX. an extended gaussian-type basis for molecular-orbital studies of organic molecules[J]. The Journal of Chemical Physics, 1971, 54(2): 724-728.
|
30 |
LI Y, WU F, LI Y, et al. Ether-based electrolytes for sodium ion batteries[J]. Chemical Society Reviews, 2022, 51(11): 4484-4536.
|
31 |
SEO D M, BORODIN O, HAN S, et al. Electrolyte solvation and ionic association II. acetonitrile-lithium salt mixtures: Highly dissociated salts[J]. Journal of The Electrochemical Society, 2012, 159(9): A1489.
|
32 |
KIM S C, WANG J Y, XU R, et al. High-entropy electrolytes for practical lithium metal batteries[J]. Nature Energy, 2023, 8: 814-826.
|
33 |
JIANG L L, YAN C, YAO Y X, et al. Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries[J]. Angewandte Chemie (International Ed in English), 2021, 60(7): 3402-3406.
|
34 |
LI Y, LIU M, WANG K, et al. Single-solvent-based electrolyte enabling a high-voltage lithium-metal battery with long cycle life[J]. Advanced Energy Materials, 2023, 13(30): 2300918.
|
35 |
YIN Y C, YANG J T, LUO J D, et al. A LaCl3-based lithium superionic conductor compatible with lithium metal[J]. Nature, 2023, 616: 77-83.
|