1 |
ZHAO M, XU G J, LU D, et al. Formulating a non-flammable highly concentrated dual-salt electrolyte for wide temperature high-nickel lithium ion batteries[J]. Journal of the Electrochemical Society, 2021, 168(5): 050511.
|
2 |
YAO N, SUN S Y, CHEN X, et al. The anionic chemistry in regulating the reductive stability of electrolytes for lithium metal batteries[J]. Angewandte Chemie International Edition, 2022, 61(52): 2210859.
|
3 |
CHEN L, SHEN X H, CHEN H, et al. High-stable nonflammable electrolyte regulated by coordination-number rule for all-climate and safer lithium-ion batteries[J]. Energy Storage Materials, 2023, 55: 836-846.
|
4 |
GOND R, VAN EKEREN W, MOGENSEN R, et al. Non-flammable liquid electrolytes for safe batteries[J]. Materials Horizons, 2021, 8(11): 2913-2928.
|
5 |
JIANG L H, CHENG Y, WANG S P, et al. A nonflammable diethyl ethylphosphonate-based electrolyte improved by synergistic effect of lithium difluoro(oxalato)borate and fluoroethylene carbonate[J]. Journal of Power Sources, 2023, 570: 233051.
|
6 |
许高洁, 王晓, 陆迪, 等. 锂离子电池高安全性阻燃电解液研究进展[J]. 储能科学与技术, 2018, 7(6): 1040-1059.
|
|
XU G J, WANG X, LU D, et al. Research progress of high safety flame retardant electrolytes for lithium-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(6): 1040-1059.
|
7 |
GU Y X, FANG S H, YANG L, et al. A safe electrolyte for high-performance lithium-ion batteries containing lithium difluoro(oxalato)borate, gamma-butyrolactone and non-flammable hydrofluoroether[J]. Electrochimica Acta, 2021, 394: 139120.
|
8 |
ZHANG K, AN Y L, WEI C L, et al. High-safety and dendrite-free lithium metal batteries enabled by building a stable interface in a nonflammable medium-concentration phosphate electrolyte[J]. ACS Applied Materials & Interfaces, 2021, 13(43): 50869-50877.
|
9 |
KIM G T, JEONG S S, JOOST M, et al. Use of natural binders and ionic liquid electrolytes for greener and safer lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(4): 2187-2194.
|
10 |
SUN H, ZHU G Z, XU X T, et al. A safe and non-flammable sodium metal battery based on an ionic liquid electrolyte[J]. Nature Communications, 2019, 10: 3302.
|
11 |
FANG S H, WANG G J, QU L, et al. A novel mixture of diethylene glycol diethylether and non-flammable methyl-nonafluorobutyl ether as a safe electrolyte for lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(42): 21159-21166.
|
12 |
DONG L W, LIU Y P, WEN K C, et al. High-polarity fluoroalkyl ether electrolyte enables solvation-free Li+ transfer for high-rate lithium metal batteries[J]. Advanced Science, 2022, 9(5): e2104699.
|
13 |
WANG J L, YONG T Q, YANG J W, et al. Organosilicon functionalized glycerol carbonates as electrolytes for lithium-ion batteries[J]. RSC Advances, 2015, 5(23): 17660-17666.
|
14 |
YONG T Q, WANG J L, MAI Y J, et al. Organosilicon compounds containing nitrile and oligo(ethylene oxide) substituents as safe electrolytes for high-voltage lithium-ion batteries[J]. Journal of Power Sources, 2014, 254: 29-32.
|
15 |
曾子琪, 艾新平, 杨汉西, 等. 有机磷酸酯阻燃电解液的研究进展[J]. 电化学, 2020, 26(5): 683-693.
|
|
ZENG Z Q, AI X P, YANG H X, et al. Research progress of high-safety phosphorus-based electrolyte[J]. Journal of Electrochemistry, 2020, 26(5): 683-693.
|
16 |
WANG Q S, JIANG L H, YU Y, et al. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect[J]. Nano Energy, 2019, 55: 93-114.
|
17 |
TAN S J, TIAN Y F, ZHAO Y, et al. Noncoordinating flame-retardant functional electrolyte solvents for rechargeable lithium-ion batteries[J]. Journal of the American Chemical Society, 2022, 144(40): 18240-18245.
|
18 |
BOGLE X, VAZQUEZ R, GREENBAUM S, et al. Understanding Li+–solvent interaction in nonaqueous carbonate electrolytes with 17O NMR[J]. The Journal of Physical Chemistry Letters, 2013, 4(10): 1664-1668.
|
19 |
TAKADA K, YAMADA Y, YAMADA A. Optimized nonflammable concentrated electrolytes by introducing a low-dielectric diluent[J]. ACS Applied Materials & Interfaces, 2019, 11(39): 35770-35776.
|
20 |
LIU M C, ZENG Z Q, ZHONG W, et al. Non-flammable fluorobenzene-diluted highly concentrated electrolytes enable high-performance Li-metal and Li-ion batteries[J]. Journal of Colloid and Interface Science, 2022, 619: 399-406.
|
21 |
LIU M C, MA F F, GE Z C, et al. "In-N-out" design enabling high-content triethyl phosphate-based non-flammable and high-conductivity electrolytes for lithium-ion batteries[J]. Science China Chemistry, 2024, 67(2): 724-731.
|
22 |
ZENG Z Q, WU B B, XIAO L F, et al. Safer lithium ion batteries based on nonflammable electrolyte[J]. Journal of Power Sources, 2015, 279: 6-12.
|
23 |
WANG X M, YAMADA C, NAITO H, et al. High-concentration trimethyl phosphate-based nonflammable electrolytes with improved charge-discharge performance of a graphite anode for lithium-ion cells[J]. Journal of the Electrochemical Society, 2006, 153(1): A135.
|
24 |
WANG X F, HE W J, XUE H L, et al. A nonflammable phosphate-based localized high-concentration electrolyte for safe and high-voltage lithium metal batteries[J]. Sustainable Energy & Fuels, 2022, 6(5): 1281-1288.
|
25 |
ZENG Z Q, MURUGESAN V, HAN K S, et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries[J]. Nature Energy, 2018, 3: 674-681.
|
26 |
GAO Y T, LI W, OU B N, et al. A dilute fluorinated phosphate electrolyte enables 4.9V-class potassium ion full batteries[J]. Advanced Functional Materials, 2023, 33(47): 2305829.
|
27 |
LIU M C, ZENG Z Q, GU C K, et al. Ethylene carbonate regulated solvation of triethyl phosphate to enable high-conductivity, nonflammable, and graphite compatible electrolyte[J]. ACS Energy Letters, 2024, 9(1): 136-144.
|
28 |
FENG J K, MA P, YANG H X, et al. Understanding the interactions of phosphonate-based flame-retarding additives with graphitic anode for lithium ion batteries[J]. Electrochimica Acta, 2013, 114: 688-692.
|
29 |
HAN X P, SUN J. Design of a LiF-rich solid electrolyte interface layer through salt-additive chemistry for boosting fast-charging phosphorus-based lithium ion battery performance[J]. Chemical Communications, 2020, 56(45): 6047-6049.
|
30 |
YAMADA Y, FURUKAWA K, SODEYAMA K, et al. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries[J]. Journal of the American Chemical Society, 2014, 136(13): 5039-5046.
|
31 |
GIFFIN G A. The role of concentration in electrolyte solutions for non-aqueous lithium-based batteries[J]. Nature Communications, 2022, 13: 5250.
|
32 |
SMART M C, RATNAKUMAR B V. Effects of electrolyte composition on lithium plating in lithium-ion cells[J]. Journal of the Electrochemical Society, 2011, 158(4): A379-A389.
|
33 |
MING J, CAO Z, LI Q, et al. Molecular-scale interfacial model for predicting electrode performance in rechargeable batteries[J]. ACS Energy Letters, 2019, 4(7): 1584-1593.
|
34 |
SHI C Y, HUANG X J, GU J H, et al. Structural regulation chemistry of lithium-ion solvation in nonflammable phosphate-based electrolytes for high interfacial compatibility with graphite anode[J]. Journal of Energy Chemistry, 2023, 87: 501-508.
|
35 |
LIU X W, SHEN X H, LUO L B, et al. Designing advanced electrolytes for lithium secondary batteries based on the coordination number rule[J]. ACS Energy Letters, 2021, 6(12): 4282-4290.
|
36 |
LIU X W, SHEN X H, LI H, et al. Ethylene carbonate-free propylene carbonate-based electrolytes with excellent electrochemical compatibility for Li-ion batteries through engineering electrolyte solvation structure[J]. Advanced Energy Materials, 2021, 11(19): 2003905.
|
37 |
ZHU B Y, SHI X T, ZHENG T L, et al. Usefulness of uselessness: Teamwork of wide temperature electrolyte enables LFP/Li cells from -40 ℃ to 140 ℃[J]. Electrochimica Acta, 2022, 425: 140698.
|
38 |
FAN X L, JI X, CHEN L, et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nature Energy, 2019, 4: 882-890.
|
39 |
FAN X L, CHEN L, BORODIN O, et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries[J]. Nature Nanotechnology, 2018, 13(8): 715-722.
|
40 |
LI W, GAO J, TIAN H Y, et al. SnF2-catalyzed formation of polymerized dioxolane as solid electrolyte and its thermal decomposition behavior[J]. Angewandte Chemie, 2022, 134(6): e202114805.
|
41 |
WENG S T, ZHANG X, YANG G J, et al. Temperature-dependent interphase formation and Li+ transport in lithium metal batteries[J]. Nature Communications, 2023, 14: 4474.
|
42 |
XU J J, ZHANG J X, POLLARD T P, et al. Electrolyte design for Li-ion batteries under extreme operating conditions[J]. Nature, 2023, 614: 694-700.
|
43 |
LYONS M E G, BRANDON M P. The significance of electrochemical impedance spectra recorded during active oxygen evolution for oxide covered Ni, Co and Fe electrodes in alkaline solution[J]. Journal of Electroanalytical Chemistry, 2009, 631(1/2): 62-70.
|