储能科学与技术 ›› 2024, Vol. 13 ›› Issue (7): 2151-2160.doi: 10.19799/j.cnki.2095-4239.2024.0383

• 低温电池专刊 • 上一篇    下一篇

重新审视低温钠金属半电池

黄嘉琦1(), 熊杰明1, 谭恩忠2(), 孙心语3, 程李巍3, 王华3()   

  1. 1.北京石油化工学院新材料与化工学院
    2.北京石油化工学院致远学院,北京 102617
    3.北京航空航天大学化学学院,北京 100191
  • 收稿日期:2024-05-06 修回日期:2024-05-23 出版日期:2024-07-28 发布日期:2024-07-23
  • 通讯作者: 谭恩忠,王华 E-mail:2023540084@bipt.edu.cn;0020020500@bipt.edu.cn;wanghua8651@buaa.edu.cn
  • 作者简介:黄嘉琦(2001—),女,硕士研究生,研究方向为低温钠离子电池,E-mail:2023540084@bipt.edu.cn
  • 基金资助:
    国家自然科学基金项目(12374284)

Revisiting the Na metal half-cell at low-temperature

Jiaqi HUANG1(), Jieming XIONG1, Enzhong TAN2(), Xinyu SUN3, Liwei CHENG3, Hua WANG3()   

  1. 1.College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology
    2.Zhiyuan School of Liberal Arts, Beijing Institute of Petrochemical Technology, Beijing 102617, China
    3.School of Chemistry, Beihang University, Beijing 100191, China
  • Received:2024-05-06 Revised:2024-05-23 Online:2024-07-28 Published:2024-07-23
  • Contact: Enzhong TAN, Hua WANG E-mail:2023540084@bipt.edu.cn;0020020500@bipt.edu.cn;wanghua8651@buaa.edu.cn

摘要:

以钠金属为对电极的纽扣半电池通常被用来评价钠离子电池电极材料的电化学性能。本工作揭示了在低温环境下,钠金属半电池在商业化酯类电解液中用于评价电极材料电化学性能存在局限性,这是因为钠金属电极在低温下具有高界面和电荷转移电阻导致了大的Na+的沉积/剥离过电势,干扰了半电池对电极材料低温电化学性能的评价。Na||硬碳(HC)半电池在-20 ℃以0.2C (1C=300 mA/g)的倍率充放电时,钠金属电极的电位变化高达0.94 V,HC电极材料仅表现出21.1 mAh/g比容量,存在对HC低温电化学性能不准确评价的可能性。针对此,本文提出了一种可以取代钠金属的Na15Sn4@Na复合电极用于钠离子电池电极材料的低温电化学性能评价。研究表明,Na15Sn4@Na电极有着与钠金属相同的电极电位。在-20 ℃的低温工况下,Na15Sn4@Na||Na15Sn4 @Na对电池在0.1 mA/cm2电流密度下的沉积/剥离过电势仅为0.09 V,远远小于钠金属电极0.96 V的沉积/剥离过电势。使用HC作为研究对象,所制备的Na15Sn4@Na||HC半电池在-20 ℃下,在HC析钠前,展现出高达100.8 mAh/g的比容量,远高于以钠金属为对电极的半电池所展示的比容量(21.1 mAh/g),说明基于Na15Sn4@Na对电极的半电池更能准确地表征材料本征的低温电化学性能。该工作为钠离子电池电极材料低温电化学性能的准确评价提供了实验依据。

关键词: 钠金属, 钠电池, 低温, 电化学, 半电池

Abstract:

Na metal-based coin-type half-cells are widely used to evaluate the electrochemical performance of electrode materials. This work presents the limitations of Na half-cells when evaluating the low-temperature performance of electrode materials in a commercial ester electrolyte. Due to the high interface and charge transfer resistance of Na metal at low temperatures, a large deposition/stripping overpotential was reached. This interferes with the evaluation of the low-temperature performance. When the Na||hard carbon (HC) half battery was charged/discharged at 0.2C (1C = 300 mA/g) at -20 ℃, the change in potential of Na metal is as high as 0.94 V. The specific capacity of the HC electrode material is only 21.1 mAh/g, thus an inaccurate evaluation of the electrochemical performance is likely. Herein, a Na15Sn4@Na composite electrode was used to evaluate the performance of electrode materials at low temperature. The electrode potential of the composite is the same than that of the Na metal. At -20 ℃, the deposition/stripping overpotential of the Na15Sn4@Na||Na15Sn4@Na cell is only 0.09 V at 0.1mA/cm2, much smaller than that of the Na metal electrode (0.96 V). In the Na15Sn4@Na||HC half-cell, the HC anode exhibits a high specific capacity of 100.8mAh/gbefore Na metal deposition at -20 ℃, much higher than that of the Na||HC half-cell (21.1 mAh/g), indicating that the Na15Sn4@Na-based half-cell would allow for a more accurate evaluation of the low-temperature performance of electrode materials. This work provides an experimental basis for accurate assessment of the low-temperature electrochemical performance.

Key words: Na metal, Na battery, low temperature, electrochemistry, half-cell

中图分类号: